Integrated Circuits Division

Parameter	Rating	Units
Blocking Voltage	350	V_{P}
Load Current	100	$\mathrm{~mA}_{\mathrm{rms}} / \mathrm{mA}_{\mathrm{DC}}$
On-Resistance (max)	35	Ω

Features

- $3750 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- Three Functions in One Package
- Bidirectional Current Sensing
- Bidirectional Current Switching
- FCC Compatible
- No EMI/RFI Generation
- Small 16-Pin SOIC Package (PCMCIA Compatible)
- Machine Insertable, Wave Solderable
- Tape \& Reel Version Available

Applications

- Telecommunications
- Telecom Switching
- Tip/Ring Circuits
- Modem Switching (Laptop, Notebook, Pocket Size)
- Hook Switch
- Dial Pulsing
- Ground Start
- Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

Description

The IAA110P Multifunction Telecom switch combines two 350V normally open (1-Form-A) relays and one optocoupler in a single package. The relays use optically coupled MOSFET technology to provide $3750 \mathrm{~V}_{\text {rms }}$ of input to output isolation. The efficient MOSFET switches and photovoltaic die use IXYS Integrated Circuits Division's patented OptoMOS architecture while the inputs' highly efficient GaAIAs infrared LEDs control the outputs. The IAA110P allows telecom circuit designers to combine three discrete functions in a single component that occupies less space than traditional discrete component solutions.

Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate 1305490
- EN/IEC 60950-1 Certified Component: TUV Certificate: B 121182667002

Ordering Information

Part \#	Description
IAA110P	16-Pin SOIC (50/Tube)
IAA110PTR	16-Pin SOIC (1000/Reel)

Pin Configuration

1. (N/C)
2. + LED - Form A Relay \#1 3. - LED - Form A Relay \#1 4. + LED - Form A Relay \#2 5. - LED - Form A Relay \#2 6. Emitter - Phototransistor 7. Collector - Phototransistor 8. (N/C)
3. LED - Phototransistor +/-
4. LED - Phototransistor -/+
5. Output - Form A Relay \#2
6. Common Source Relay \#2 13. Output - Form A Relay \#2 14. Output - Form A Relay \#1
7. Common Source Relay \#1
8. Output - Form A Relay \#1

Switching Characteristics of Normally Open Devices

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Ratings	Units
Input Control Current, Relay	50	mA
Total Package Dissipation ${ }^{1}$	1	W
Isolation Voltage, Input to Output	3750	$\mathrm{~V}_{\text {rms }}$
Operational Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.
${ }^{1}$ Derate linearly $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics @ $25^{\circ} \mathrm{C}$: Relay Section

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics						
Blocking Voltage (Peak)	$\mathrm{I}_{\mathrm{L}}=1 \mu \mathrm{~A}$	V	-	-	350	V_{P}
Load Current Continuous Peak	-	I_{L}	-	-	100	$m A_{\text {rms }} / \mathrm{mA}_{\text {DC }}$
	$\mathrm{t}=10 \mathrm{~ms}$	LLPK	-	-	350	$m{ }_{\text {P }}$
On-Resistance	$\mathrm{L}_{\mathrm{L}}=100 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	-	35	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=350 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds Turn-On Turn-Off	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	-	-	3	ms
		$\mathrm{t}_{\text {fff }}$	-	-	3	ms
Output Capacitance	$\mathrm{V}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	25	-	pF
Input Characteristics						
Input Control Current to Activate	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	I_{F}	-	-	5	mA
Input Control Current to Deactivate	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$	I_{F}	0.4	-	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Reverse Input Voltage	-	V_{R}	-	-	5	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {R }}$	-	-	10	$\mu \mathrm{A}$

Electrical Characteristics @ $25^{\circ} \mathrm{C}$: Detector Section

Parameter	Conditions	Symbol	Min	Tур	Max	Units
Output Characteristics						
Phototransistor Blocking Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	$\mathrm{BV}_{\text {CEO }}$	20	50	-	V
Phototransistor Dark Current	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	$\mathrm{I}_{\text {CEO }}$	-	50	500	nA
Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$	$V_{\text {SAT }}$	-	0.3	0.5	V
Current Transfer Ratio	$\mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}$	CTR	33	-	-	\%
Input Characteristics						
Input Control Current	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}$	I_{F}	-	2	6	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Input Current (Detector Must be Off)	$\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	-	5	25	-	$\mu \mathrm{A}$
Capacitance, Input to Output	$\mathrm{V}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{1 / 0}$	-	3	-	pF
Isolation, Input to Output	-	$\mathrm{V}_{1 / 0}$	3750	-	-	$\mathrm{V}_{\mathrm{rms}}$

COMMON PERFORMANCE DATA*

RELAY PERFORMANCE DATA*

Typical Turn-On Time
$\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Typical Turn-Off Time

$\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}_{\mathrm{D}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Typical Turn-On Time vs. LED Forward Current $\left(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \mathrm{DC}_{\mathrm{D}}\right)$

Typical I_{F} for Switch Dropout $\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Typical Turn-Off Time vs. LED Forward Current $\left(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}_{\mathrm{DC}}\right)$

Typical On-Resistance Distribution
$\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Typical Blocking Voltage Distribution
($\mathrm{N}=50, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Typical On-Resistance
vs. Temperature
$\left(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \mathrm{Ac}_{\mathrm{C}}\right)$

* The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

RELAY PERFORMANCE DATA (cont.)*

DETECTOR PERFORMANCE DATA*
Typical Normalized CTR vs. Forward Current
$\left(V_{C E}=0.5 \mathrm{~V}\right)$

Typical Collector Current vs. Forward Current

* The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Rating
IAA110P	MSL 1

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

Device	Maximum Temperature x Time
IAA110P	$260^{\circ} \mathrm{C}$ for 30 seconds

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.

MECHANICAL DIMENSIONS

IAA110P

NOTES:

1. Coplanarity $=0.1016$ (0.004) max.
2. Leadframe thickness does not include solder plating (1000 microinch maximum).

IAA110PTR Tape \& Reel

NOTES:

1. All dimensions carry tolerances of EIA Standard 481-2
2. The tape complies with all "Notes" for constant dimensions listed on page 5 of EIA-481-2

For additional information please visit our website at: www.ixysic.com
IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQH3213J AQV212J AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S LBB110S LCA110LSTR LCB126S WPPM-0626D WPPM-3526D WPPM-3588D

