XPT IGBT

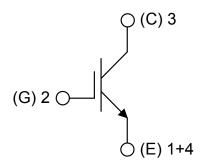
tentative

650 V V_{CES}

255A

V_{CE(sat)} = 1.6V

Single IGBT


Part number

IXA2201650NA

Backside: isolated

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
 - low EMI
 - square RBSOA @ 2x Ic
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

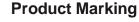
Applications:

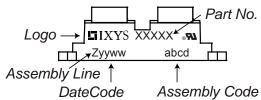
- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipmentSwitched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper internally DCB isolated
- Advanced power cycling
- Either emitter terminal can be used as main or Kelvin emitter

tentative


IGBT				Ratings				
Symbol	Definition		Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage			$T_{VJ} = 25^{\circ}C$			650	V
V _{GES}	max. DC gate voltage						±20	V
V_{GEM}	max. transient gate emitter voltage						±30	V
I _{C25}	collector current			$T_{c} = 25^{\circ}C$			255	Α
I _{C80}				$T_{c} = 80^{\circ}C$			156	Α
P _{tot}	total power dissipation			$T_{c} = 25^{\circ}C$			625	W
V _{CE(sat)}	collector emitter saturation voltage		I_C = 200A; V_{GE} = 15 V	$T_{VJ} = 25^{\circ}C$		1.6	1.8	V
				$T_{VJ} = 125^{\circ}C$		1.9		V
$V_{GE(th)}$	gate emitter threshold voltage		I_{C} = 3.2mA; V_{GE} = V_{CE}	$T_{VJ} = 25^{\circ}C$	4	4.8	5.5	V
I _{CES}	collector emitter leakage current		$V_{CE} = V_{CES}$; $V_{GE} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$			0.1	mA
				$T_{VJ} = 125^{\circ}C$		0.1		mΑ
I _{GES}	gate emitter leakage current		$V_{GE} = \pm 20 \text{ V}$				500	nA
Q _{G(on)}	total gate charge		$V_{CE} = 300 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} =$	200 A		280		nC
t _{d(on)}	turn-on delay time	7				30		ns
tr	current rise time		in decation to ad	T 405%		50		ns
$t_{d(off)}$	turn-off delay time		inductive load	$T_{VJ} = 125^{\circ}C$		100		ns
t_f	current fall time		$V_{CE} = 300 \text{ V}; I_C = 200 \text{ A}$			40		ns
E _{on}	turn-on energy per pulse		$V_{GE} = \pm 15 \text{ V}; R_G = 3.9 \Omega$			2		mJ
E_{off}	turn-off energy per pulse	J				7.6		mJ
RBSOA	reverse bias safe operating area	7	$V_{GE} = \pm 15 \text{ V}; R_{G} = 3.9 \Omega$	T _{VJ} = 125°C				
I _{CM}		\int	$V_{CEmax} = 650 V$				400	Α
SCSOA	short circuit safe operating area	7	V _{CEmax} = 650 V					
tsc	short circuit duration	>	$V_{CE} = 360 V; V_{GE} = \pm 15 V$	$T_{VJ} = 125^{\circ}C$			10	μs
I _{sc}	short circuit current	J	R_G = 3.9 Ω ; non-repetitive			800		Α
R _{thJC}	thermal resistance junction to case						0.2	K/W
R _{thCH}	thermal resistance case to heatsink					0.10		K/W



tentative

Package SOT-227B (minibloc)			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal 1)					150	Α
T _{VJ}	virtual junction temperature	9			-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
M_{τ}	terminal torque				1.1		1.5	Nm
d _{Spp/App}	creenage distance on surf	ace striking distance through air	terminal to terminal	10.5	3.2			mm
d _{Spb/Apb}	creepage distance on sun	ace surking distance unough an	terminal to backside	8.6	6.8			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		3000			V
		t = 1 minute			2500			V

¹⁾ l_{nusc} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

Part description

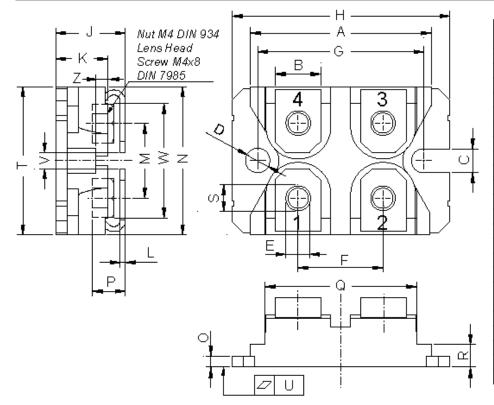
I = IGBT X = XPT IGBT

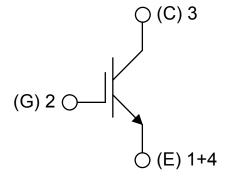
A = Gen 1 / std 220 = Current Rating [A]

I = Single IGBT

650 = Reverse Voltage [V] NA = SOT-227B (minibloc)

Orderin	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standa	IXA220I650NA	IXA220I650NA	Tube	10	514555


Equiva	alent Circuits for Simulation	* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$
$I \rightarrow V_0$)[R _o]-	IGBT	
V _{0 max}	threshold voltage	1.1	V
R _{0 max}	slope resistance *	5.3	$m\Omega$



tentative

Outlines SOT-227B (minibloc)

Dim.	Millir	neter	Inches		
DIM.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
K	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
M	12.50	13.10	0.492	0.516	
N	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Р	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Ζ	2.50	2.70	0.098	0.106	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

F3L100R07W2E3_B11 F3L15R12W2H3_B27 F3L400R07ME4_B22 F3L400R12PT4_B26 F4-100R12KS4 F4-50R07W2H3_B51 F475R12KS4_B11 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD300R06KE3 FD300R12KE3 FD300R12KS4_B5
FD400R12KE3 FD400R33KF2C-K FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF100R12KS4 FF1200R17KE3_B2 FF150R12KE3G
FF200R06KE3 FF200R06YE3 FF200R12KT3 FF200R12KT3_E FF200R12KT4 FF200R17KE3 FF300R06KE3_B2 FF300R12KE4_E
FF300R12KS4HOSA1 FF300R12ME4_B11 FF300R12MS4 FF300R17ME4 FF450R12ME4P FF450R17IE4 FF600R12IE4V
FF600R12IP4V FF800R17KP4_B2 FF900R12IE4V MIXA30W1200TED MIXA450PF1200TSF FP06R12W1T4_B3 FP100R07N3E4
FP100R07N3E4_B11 FP10R06W1E3_B11 FP10R12W1T4_B11 FP10R12YT3 FP10R12YT3_B4 FP150R07N3E4 FP15R12KT3
FP15R12W2T4