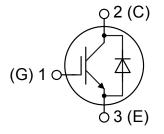
XPT IGBT

Copack


Part number

IXA4IF1200UC

Marking on Product: X4TAUF

Backside: collector

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
- low EMI
- square RBSOA @ 3x lc
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)
- SONIC[™] diode
- fast and soft reverse recovery
- low operating forward voltage

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
 Switched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: TO-252 (DPak)

- · Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

IXYS reserves the right to change limits, conditions and dimensions.

20111109a

IXA4IF1200UC

=

=

V_{CES}

|_{C25}

V_{CE(sat)} =

preliminary 1200V

9A

1.8V

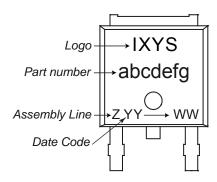
LIXYS

IXA4IF1200UC

preliminary

IGBT							1	Ratings	;	
Symbol	Definition		Cond	itions			min.	typ.	max.	Unit
	collector emitter voltage				T _{vj} =	25°C			1200	V
V _{GES}	max. DC gate voltage								±20	V
V _{GEM}	max. transient gate emitter voltage								±30	V
I _{C25}	collector current				T _c =	25°C			9	A
I _{C 100}					T _c =	100°C			5	A
Ptot	total power dissipation				T _c =	25°C			45	W
V _{CE(sat)}	collector emitter saturation voltage		I _c =	3A; V _{GE} = 15 V	T _{VJ} =	25°C		1.8	2.1	V
					T _{VJ} =	125°C		2.1		V
V _{GE(th)}	gate emitter threshold voltage		$I_c = 0$.1mA; V _{GE} = V _{CE}	T _{VJ} =	25°C	5.4	5.9	6.5	V
ICES	collector emitter leakage current		V _{CE} = Y	$V_{\text{CES}}; V_{\text{GE}} = 0 \text{ V}$	T _{VJ} =	25°C			0.1	mA
					T _{VJ} =	125°C		0.1		mA
I _{GES}	gate emitter leakage current		V_{GE} =	±20 V					500	nA
Q _{G(on)}	total gate charge		V_{CE} =	600 V; V_{GE} = 15 V; I_{C} =	3 A			12		nC
t _{d(on)}	turn-on delay time	٦						70		ns
tr	current rise time				_			40		ns
t _{d(off)}	turn-off delay time	l		tive load	I _{VJ} =	125°C		250		ns
tr	current fall time	7		$600 \text{ V}; \text{ I}_{\text{c}} = 3 \text{ A}$				100		ns
Eon	turn-on energy per pulse		V_{GE} =	±15 V; R _G =330 Ω				0.4		mJ
E _{off}	turn-off energy per pulse	J						0.3		mJ
RBSOA	reverse bias safe operating area	٦	V _{GE} =	±15 V; R _G =330 Ω	T _{VJ} =	125°C				1 1 1 1
I _{CM}		ſ	V_{CEmax}	= 1200V					9	A
SCSOA	short circuit safe operating area	٦	V_{CEmax}	= 900V						
tsc	short circuit duration	}	V _{CE} =	900 V; V _{GE} = ±15 V	T _{vj} =	125°C			10	μs
l _{sc}	short circuit current	J		30Ω; non-repetitive				12		A
R _{thJC}	thermal resistance junction to case								2.7	K/W
R _{thCH}	thermal resistance case to heatsink							0.50		K/W
Diode					_					
V _{RRM}	max. repetitive reverse voltage					25°C			1200	V
I _{F25}	forward current					25°C			10	A
I _{F 100}	· · ·					100°C			6	A
V _F	forward voltage		_F =	3A		25°C			2.20	V
						125°C		1.90		V
I _R	reverse current		$V_R = V$	RRM		25°C			*	mA
	* not applicable, see Ices value abov	'e			$T_{VJ} =$	125°C		*		mA
Q _r	reverse recovery charge	٦	V. = 6	300 V				0.5		μC
I _{RM}	max. reverse recovery current	Y	-di₋ /d	t = -150 A/us	T _{V1} =	125°C		5		A
t _{rr}	reverse recovery time		₌ =	600 V t = -150 A/µs 3A; V _{GE} = 0 V	- vJ			350		ns
Erec	reverse recovery energy	J	•r					0.1		mJ
R _{thJC}	thermal resistance junction to case								3	
R _{thCH}	thermal resistance case to heatsink							0.50		K/W

20111109a



IXA4IF1200UC

preliminary

Package TO-252 (DPak)				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal			20	Α	
T _{vj}	virtual junction temperature		-40		150	°C	
T _{op}	operation temperature		-40		125	°C	
T _{stg}	storage temperature		-40		150	°C	
Weight				0.3		g	
Fc	mounting force with clip		20		60	Ν	

Product Marking

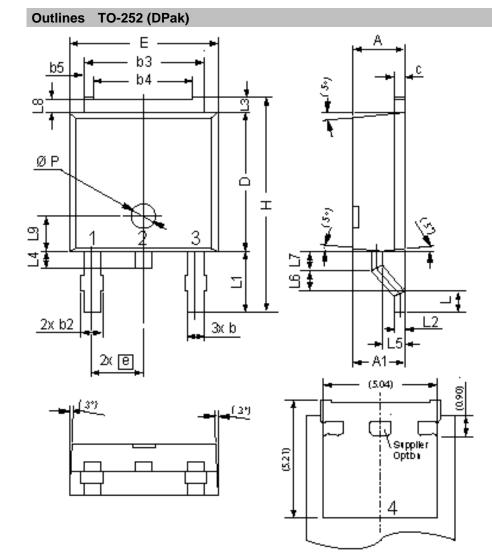
Part number

- I = IGBT
- X = XPT IGBT A = Gen 1 / std
- 4 = Current Rating [A]
- IF = Copack
- 1200 = Reverse Voltage [V] UC = TO-252AA (DPak)

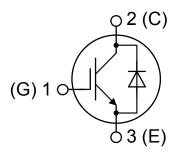
1	Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
	Standard	IXA4IF1200UC	X4TAUF	Tape & Reel	2500	510217

Similar Part	Package	Voltage class
IXA4IF1200TC	TO-268AA (D3Pak) (2)	1200

Equiva	lent Circuits for Simulation	* on die level		T _{vj} = 15	50 °C
	- R _o -		IGBT	Diode	
V _{0 max} →	threshold voltage		1.1	1.25	V
$R_{0 max}$	slope resistance *		460	280	mΩ


IXYS reserves the right to change limits, conditions and dimensions.

20111109a



IXA4IF1200UC

preliminary

Dim.	Millimeters		Inches		
Ulm.	min	max	min	max	
A	2.20	2.40	0.087	0.094	
A1	2.10	2.50	0.083	0.098	
b	0.66	0.86	0.026	0.034	
b2	-	0.96	-	0.038	
b3	5.04	5.64	0.198	0.222	
-b4	4.34	BSC	0.171	BSC	
b5	0.50	BSC	0.020	BSC	
С	0.40	0.86	0.016	0.034	
D	5.90	6.30	0.232	0.248	
Е	6.40	6.80	0.252	0.268	
е	2.10	2.50	0.083	0.098	
Η	9.20	10.10	0.362	0.398	
L	0.55	1.28	0.022	0.050	
L1	2.50	2.90	0.098	0.114	
L2	0.40	0.60	0.016	0.024	
L3	0.50	0.90	0.020	0.035	
L4	0.60	1.00	0.024	0.039	
L5	0.82	1.22	0.032	0.048	
L6	0.79	0.99	0.031	0.039	
L7	0.81	1.01	0.032	0.040	
L8	0.40	0.80	0.016	0.031	
L9	1.50	BSC	0.059	BSC	
ØΡ	1.00	BSC	0.039	BSC	

IXYS reserves the right to change limits, conditions and dimensions.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

748152A FGH60T65SHD_F155 APT100GT60B2RG APT13GP120BG APT20GN60BG APT20GT60BRDQ1G APT25GN120B2DQ2G APT35GA90BD15 APT36GA60BD15 APT40GP60B2DQ2G APT40GP90B2DQ2G APT50GN120B2G APT50GT60BRG APT64GA90B2D30 APT70GR120J NGTB10N60FG NGTB30N60L2WG NGTG25N120FL2WG IGP30N60H3XKSA1 STGB15H60DF STGFW20V60DF STGFW30V60DF STGFW40V60F STGWA25H120DF2 FGB3236_F085 APT25GN120BG APT25GR120S APT30GN60BDQ2G APT30GN60BG APT30GP60BG APT30GS60BRDQ2G APT30N60BC6 APT35GP120JDQ2 APT36GA60B APT45GR65B2DU30 APT50GP60B2DQ2G APT68GA60B APT70GR65B APT70GR65B2SCD30 GT50JR22(STA1ES) TIG058E8-TL-H IDW40E65D2 NGTB50N60L2WG STGB10H60DF STGB20V60F STGB40V60F STGFW80V60F IGW40N120H3FKSA1 RJH60D7BDPQ-E0#T2 APT40GR120B