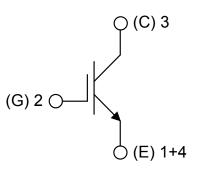
XPT IGBT

IXA70I1200NA


V_{CES}	=	1200 V
_{C25}	=	100A
V _{CE(sat)}	=	1.8V

Single IGBT

Part number IXA70I1200NA

Backside: isolated **E**72873

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through)
- results in: - short circuit rated for 10 µsec.
- very low gate charge
- low EMI
- square RBSOA @ 3x lc
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

Applications:

- AC motor drives
- Solar inverter
- Medical equipment

• Pumps, Fans

- Uninterruptible power supply
- Air-conditioning systems

• Inductive heating, cookers

- Welding equipment
 Switched-mode and resonant-mode power supplies
- Advanced power cycling • Either emitter terminal can be used as main or Kelvin emitter

Package: SOT-227B (minibloc)

 Isolation Voltage: 3000 V~ Industry standard outlineRoHS compliant

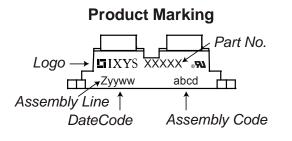
• Epoxy meets UL 94V-0 Base plate: Copper internally DCB isolated

IXYS reserves the right to change limits, conditions and dimensions.

LIXYS

IXA70I1200NA

IGBT						Ratings	;	
Symbol	Definition		Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage			$T_{VJ} = 25^{\circ}C$			1200	V
V_{GES}	max. DC gate voltage						±20	V
V_{GEM}	max. transient gate emitter voltage						±30	V
I _{C25}	collector current			$T_c = 25^{\circ}C$			100	Α
I _{C 80}				$T_c = 80^{\circ}C$			65	Α
P _{tot}	total power dissipation			$T_c = 25^{\circ}C$			350	W
V _{CE(sat)}	collector emitter saturation voltage		$I_{\rm C}$ = 50A; $V_{\rm GE}$ = 15 V	$T_{VJ} = 25^{\circ}C$		1.8	2.1	V
				$T_{v_{J}} = 125^{\circ}C$		2.1		V
$V_{GE(th)}$	gate emitter threshold voltage		$I_c = 2mA; V_{GE} = V_{CE}$	$T_{VJ} = 25^{\circ}C$	5.4	5.9	6.5	V
ICES	collector emitter leakage current		$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{vJ} = 25^{\circ}C$			0.1	mA
				$T_{v_{J}} = 125^{\circ}C$		0.1		mA
I _{GES}	gate emitter leakage current		$V_{GE} = \pm 20 V$				500	nA
Q _{G(on)}	total gate charge		V_{CE} = 600 V; V_{GE} = 15 V; I_{C} =	50 A		190		nC
t _{d(on)}	turn-on delay time	٦				70		ns
tr	current rise time		inductive load	$T = 105^{\circ}C$		40		ns
t _{d(off)}	turn-off delay time	L	inductive load	T _{vJ} = 125°C		250		ns
t _r	current fall time	ſ	$V_{CE} = 600 \text{ V}; I_C = 50 \text{ A}$			100		ns
Eon	turn-on energy per pulse		$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 15 \Omega$			4.5		mJ
E _{off}	turn-off energy per pulse	J				5.5		mJ
RBSOA	reverse bias safe operating area	٦	$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 15 \Omega$	$T_{v_{J}} = 125^{\circ}C$				
I _{CM}		ſ	V _{CEmax} = 1200 V				150	Α
SCSOA	short circuit safe operating area	٦	V _{CEmax} = 1200 V					
t _{sc}	short circuit duration	>	$V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V}$	$T_{v_{J}} = 125^{\circ}C$			10	μs
l _{sc}	short circuit current	J	R_{G} = 15 Ω ; non-repetitive			200		А
R _{thJC}	thermal resistance junction to case						0.35	K/W
R _{thCH}	thermal resistance case to heatsink					0.10		K/W


20140708c

IXA70I1200NA

Package	kage SOT-227B (minibloc)					Ratings	6		
Symbol	Definition	Conditions			min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal 1)					150	A	
T _{vj}	virtual junction temperature)			-40		150	°C	
T _{op}	operation temperature				-40		125	°C	
T _{stg}	storage temperature				-40		150	°C	
Weight						30		g	
M _D	mounting torque				1.1		1.5	Nm	
Μ _τ	terminal torque				1.1		1.5	Nm	
d _{Spp/App}	oroonogo diotonoo on ourfo	ce striking distance through air	terminal to terminal	10.5	3.2			mm	
d _{Spb/Apb}	creepage distance on suna		terminal to backside	8.6	6.8			mm	
	isolation voltage	t = 1 second			3000			V	
		t = 1 minute	50/60 Hz, RMS; Iıso∟ ≤ 1 mA		2500			V	

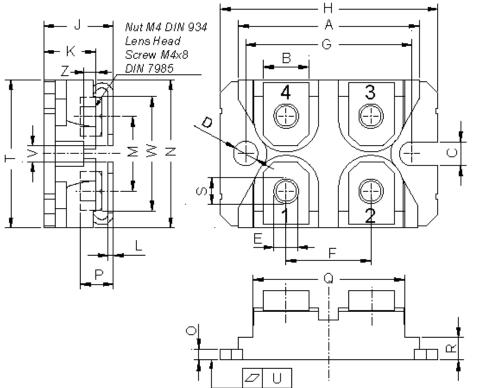
¹⁾I_{RMS} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

Part description

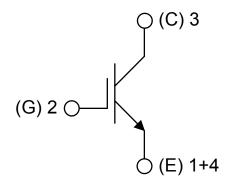
Т	=	IGBT
Х	=	XPT IGBT
А	=	Gen 1 / std
70	=	Current Rating [A]

I = Single IGBT

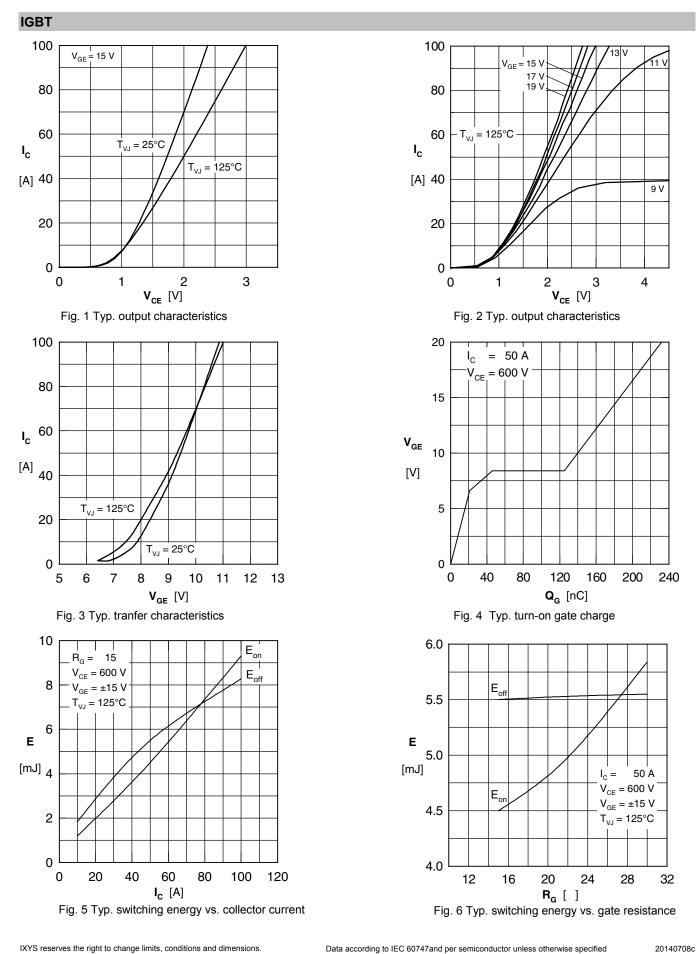
1200 = Reverse Voltage [V] NA = SOT-227B (minibloc)


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	IXA70I1200NA	IXA70I1200NA	Tube	10	511265

Similar Part	Package	Voltage class
IXA60IF1200NA	SOT-227B (minibloc)	1200


Equiv	alent Circuits for Simulation	* on die level	T _{vj} = 150 °C
)-[R ₀]-	IGBT	
V _{0 max}	threshold voltage	1.1	V
$R_{0 max}$	slope resistance *	28	mΩ

Outlines SOT-227B (minibloc)



Dim.	Millimeter		Inches		
Dim.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
E	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
К	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
M	12.50	13.10	0.492	0.516	
N	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Р	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Ζ	2.50	2.70	0.098	0.106	

IXYS reserves the right to change limits, conditions and dimensions.

IXA70I1200NA

IXYS reserves the right to change limits, conditions and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

 F3L400R07ME4_B22
 F4-50R07W2H3_B51
 FB15R06W1E3
 FB20R06W1E3_B11
 FD1000R33HE3-K
 FD400R33KF2C-K

 FD401R17KF6C_B2
 FD-DF80R12W1H3_B52
 FF200R06YE3
 FF300R12KE4_E
 FF450R12ME4P
 FF600R12IP4V
 FP10R06W1E3_B11

 FP20R06W1E3
 FP50R12KT3
 FP75R07N2E4_B11
 FS10R12YE3
 FS150R07PE4
 FS150R12PT4
 FS200R12KT4R
 FS50R07N2E4_B11

 FZ1000R33HE3
 FZ1800R17KF4
 DD250S65K3
 DF1000R17IE4
 DF1000R17IE4D_B2
 DF1400R12IP4D
 DF200R12PT4_B6

 DF400R07PE4R_B6
 BSM75GB120DN2_E3223c-Se
 F3L300R12ME4_B22
 F3L75R07W2E3_B11
 F4-50R12KS4_B11

 F475R07W1H3B11ABOMA1
 FD1400R12IP4D
 FD200R12PT4_B6
 FD800R33KF2C-K
 FF1200R17KP4_B2
 FF300R17KE3_S4

 FF300R17ME4_B11
 FF401R17KF6C_B2
 FF650R17IE4D_B2
 FF900R12IP4D
 STGIF7CH60TS-L
 FP50R07N2E4_B11

 FS100R07PE4
 FS150R07N3E4_B11
 FS150R17N3E4
 FS150R17PE4
 STGIF7CH60TS-L
 FP50R07N2E4_B11