


High Voltage, High Gain BIMOSFET™ Monolithic Bipolar MOS Transistor

IXBA16N170AHV IXBT16N170AHV

 $V_{CE(sat)} \leq 6.0V$

Symbol	Test Conditions	Maximu	m Ratings		
V _{CES}	T _c = 25°C to 150°C	1700	V		
V _{CGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GE} = 1\text{M}\Omega$	1700	V		
V _{GES}	Continuous	± 20	V		
V _{GEM}	Transient	± 30	V		
I _{C25} I _{C90} I _{CM}	$T_{c} = 25^{\circ}C$ $T_{c} = 90^{\circ}C$ $T_{c} = 25^{\circ}C, 1ms$	16 10 40	A A A		
SSOA (RBSOA)	$V_{GE} = 15V$, $T_{VJ} = 125^{\circ}C$, $R_{G} = 33\Omega$ Clamped Inductive Load	I _{CM} = 40 1350	A V		
t _{sc} (SCSOA)	$V_{GE} = 15V$, $V_{CE} = 1200V$, $T_{J} = 125$ °C $R_{G} = 33\Omega$, Non Repetitive	10	μs		
P _c	T _c = 25°C	150	W		
T _J		-55 +150	°C		
T_{JM}		150	°C		
T _{stg}		-55 +150	°C		
T _L T _{SOLD}	Maximum Lead Temperature for Solderin Plastic Body for 10s	ng 300 260	°C °C		
F _c	Mounting Force (TO-263)	1065 / 2214.6	N/lb		
Weight	TO-263 TO-268	2.5 4.0	g g		

Weight	TO-263 TO-268		2.5 4.0		g g
•	Test Conditions C Unless Otherwise Specified)	Char Min.	acteristic ' Typ.	Values Max.	
BV _{CES}	$I_{C} = 250 \mu A, V_{GE} = 0 V$	1700			V
V _{GE(th)}	$I_{C} = 250\mu A, V_{CE} = V_{GE}$	2.5		5.5	V
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}, V_{GE} = 0V$	T _J = 125°C		50 1.5	μA mA
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	I _C = 10A, V _{GE} = 15V, Note 1			6.0	V
		T ₁ = 125°C	5.0		V

C (Tab)

G = Gate C = Collector E = Emitter Tab = Collector

Features

- High Voltage Package
- High Blocking Voltage
- Anti-Parallel Diode
- Low Conduction Losses

Advantages

- Low Gate Drive Requirement
- High Power Density

Applications:

- Switch-Mode and Resonant-Mode Power Supplies
- Uninterruptible Power Supplies (UPS)
- Laser Generators
- Capacitor Discharge Circuits
- AC Switches

Symbol	Symbol Test Conditions Characteristic Value			alues		
$(T_J = 25^\circ)$	C U	nless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}		$I_{\rm C} = 10$ A, $V_{\rm CE} = 10$ V, Note 1	8.0	12.5		S
C _{ies})			1400		рF
C _{oes}	}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		90		рF
C _{res}	J			31		pF
Q _{g(on)})			65		nC
\mathbf{Q}_{qe}	}	$I_{\rm C} = 10$ A, $V_{\rm GE} = 15$ V, $V_{\rm CE} = 0.5 \bullet V_{\rm CES}$		13		nC
Q _{gc}	J			22		nC
t _{d(on)})	Inductive load, T ₁ = 25°C		15		ns
t _{ri}		$I_{\rm C} = 10A, V_{\rm GF} = 15V$		25		ns
$\mathbf{t}_{d(off)}$	}	$V_{CF} = 0.8 \cdot V_{CFS}, R_{G} = 10\Omega$		160	250	ns
t _{fi}		Note 2		50	100	ns
E _{off}	J	NOIG Z		1.2	2.5	mJ
t _{d(on)})			15		ns
t _{ri}		Inductive load, T _J = 125°C		28		ns
E_{on}		$I_{\rm C} = 10A, V_{\rm GE} = 15V$		2.0		mJ
$\mathbf{t}_{d(off)}$		$V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 10\Omega$		220		ns
t _{fi}		Note 2		150		ns
E _{off}	<u> </u>			2.6		mJ
R_{thJC}					0.83	°C/W

TO-263HV Outline TO-263HV Outline PIN: 1 - Gate 2 - Emitter 3 - Collector

SYM	INCH	HES	MILLIN	METER
SIM	MIN	MAX	MIN	MAX
Α	.170	.185	4.30	4.70
A1	.000	.008	0.00	0.20
A2	.091	.098	2.30	2.50
Ь	.028	.035	0.70	0.90
b2	.046	.054	1.18	1.38
С	.018	.024	0.45	0.60
C2	.049	.055	1.25	1.40
D	.354	.370	9.00	9.40
D1	.311	.327	7.90	8.30
E	.386	.402	9.80	10.20
E1	.307	.323	7.80	8.20
e1	.200	BSC	5.08 BSC	
(e2)	.163	.174	4.13	4.43
Н	.591	.614	15.00	15.60
L	.079	.102	2.00	2.60
L1	.039	.055	1.00	1.40
L3	.010 BSC		0.254 BSC	
(L4)	.071	.087	1.80	2.20

Reverse Diode

•			Values Max.		
V _F		$I_{F} = 10A, V_{GE} = 0V$		5.0	V
t _{rr})	$I_F = 10A, V_{GE} = 0V, -di_F/dt = 50A/\mu s$	360		ns
I _{RM}	}	$V_{R} = 100V, V_{GE} = 0V$	10		Α

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher V_{CE} (clamp), T_J or R_g .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-268HV Outline PIN: 1 - Gate 2 - Emitter 3 - Collector NCHES MILLIMETER

SYM	INCH	HES	MILLIN	METER
SIM	MIN	MAX	MIN	MAX
А	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
Ь	.045	.057	1.15	1.45
C	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.465	.476	11.80	12.10
D2	.295	.307	7.50	7.80
D3	.114	.126	2.90	3.20
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215	BSC	5.45 BSC	
Η	.736	.752	18.70	19.10
L	.067	.079	1.70	2.00
L2	.039	.045	1.00	1.15
[L3]	.010	BSC	0.25 BSC	
L4	.150	.161	3.80	4.10

IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

 748152A
 FGH60T65SHD_F155
 APT100GT60B2RG
 APT13GP120BG
 APT20GN60BG
 APT20GT60BRDQ1G
 APT25GN120B2DQ2G

 APT35GA90BD15
 APT36GA60BD15
 APT40GP60B2DQ2G
 APT40GP90B2DQ2G
 APT50GN120B2G
 APT50GT60BRG

 APT64GA90B2D30
 APT70GR120J
 NGTB10N60FG
 NGTB30N60L2WG
 NGTG25N120FL2WG
 IGP30N60H3XKSA1
 STGB15H60DF

 STGFW20V60DF
 STGFW30V60DF
 STGFW40V60F
 STGWA25H120DF2
 FGB3236_F085
 APT25GN120BG
 APT25GR120S

 APT30GN60BDQ2G
 APT30GN60BG
 APT30GP60BG
 APT30GS60BRDQ2G
 APT30N60BC6
 APT35GP120JDQ2
 APT36GA60B

 APT45GR65B2DU30
 APT50GP60B2DQ2G
 APT68GA60B
 APT70GR65B
 APT70GR65B2SCD30
 GT50JR22(STA1ES)
 TIG058E8-TL-H

 IDW40E65D2
 NGTB50N60L2WG
 STGB10H60DF
 STGB20V60F
 STGB40V60F
 STGFW80V60F
 IGW40N120H3FKSA1

 RJH60D7BDPQ-E0#T2
 APT40GR120B