HiperFET ${ }^{\text {TM }}$
Power MOSFETs Q-Class

N-Channel Enhancement Mode
Avalanche Rated
Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSs }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	1000	V
$V_{\text {GSs }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	4	A
$\underline{\mathrm{I}_{\mathrm{DM}}}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Pulse Width Limited by $\mathrm{T}_{\text {JM }}$	16	A
I_{A}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	4	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	700	mJ
dv/dt	$\mathrm{I}_{\mathrm{s}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$	5	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	150	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temperature for Soldering	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {soLD }}$	Plastic Body for 10s	260	${ }^{\circ} \mathrm{C}$
M_{c}	Mounting Force (TO-263)	10..65/2.2..14.6	Nm/lb.in.
M_{d}	Mounting Torque (TO-220)	1.13/10	Nm/lb.in.
Weight	TO-263	2.5	g
	TO-220	3.0	g

Symbol Test Conditions ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified)			Characteristic Values		
			Min.	Typ.	Max.
$\mathrm{BV}_{\text {DSS }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		1000		V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~mA}$		2.5		4.5 V
$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$				$\pm 100 \mathrm{nA}$
$\mathrm{I}_{\text {DSS }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			$\begin{array}{r} 50 \mu \mathrm{~A} \\ 1 \mathrm{~mA} \end{array}$
$\mathrm{R}_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$	Note 1			3.0 行

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{Dss}}=1000 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{D} 2 \mathrm{~s}}=4 \mathrm{~A} \\
& \mathrm{R}_{\mathrm{DS}(\text { (on })} \leq 3.0 \Omega
\end{aligned}
$$

TO-263 AA (IXFA)

TO-220AB (IXFP)

$$
\begin{array}{ll}
\mathrm{G}=\text { Gate } & \mathrm{D}=\text { Drain } \\
\mathrm{S}=\text { Source } & \text { Tab }=\text { Drain }
\end{array}
$$

Features

- International Standard Packages
- Avalanche Rated
- Fast Intrinsic Diode
- Low Q_{G}
- Low $\mathrm{R}_{\mathrm{DS}(o n)}$
- Low Drain-to-Tab Capacitance
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- Temperature and Lighting Controls

IXFA4N100Q IXFP4N100Q

Symbol Test Conditions Characteristic Values

($\mathrm{T}_{\mathrm{J}}=2$	Unless Otherwise Specified)	Min.	Typ.	Max.
$\mathrm{g}_{\text {fs }}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$, Note 1	1.5	2.5	S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	$\} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 1050 \\ 120 \\ 30 \end{array}$	pF pF pF
$\begin{aligned} & t_{\mathrm{d}(\text { on })} \\ & \mathbf{t}_{\mathrm{r}} \\ & \mathbf{t}_{\mathrm{d}(\text { off })} \\ & t_{\mathrm{f}} \\ & \hline \end{aligned}$	Resistive Switching Times $\left\{\begin{array}{l} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25} \\ \mathrm{R}_{\mathrm{G}}=4.7 \Omega \text { (External) } \end{array}\right.$		$\begin{aligned} & 17 \\ & 15 \\ & 32 \\ & 18 \end{aligned}$	ns
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}(o n)} \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \end{aligned}$	\} $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$		$\begin{array}{r} 39 \\ 9 \\ 23 \end{array}$	nC
$\mathrm{R}_{\mathrm{thJc}}$ $\mathrm{R}_{\mathrm{thcs}}$	TO-220		0.50	$0.80^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$

Source-Drain Diode

Symbol Test Conditions$\left(T_{j}=25^{\circ} \mathrm{C}\right.$ Unless Otherwise Specified)		Characteristic Values			
		Min.	Typ.	Max.	
I_{s}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			4	A
I_{Sm}	Repetitive, Pulse Width Limited by $\mathrm{T}_{\text {JM }}$			16	A
$\mathrm{V}_{\text {sD }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, Note 1			1.5	V
$t_{r r}$ $Q_{\text {RM }}$ I_{RM}	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.52 \\ 1.80 \end{gathered}$	250	ns $\mu \mathrm{C}$ A

Note

1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$.

TO-263 Outline

SYM	INCHES		MLLLIMETERS	
	MIN	MAX	MIN	MAX
A	.160	.190	4.06	4.83
A1	.080	.110	2.03	2.79
b	.020	.039	0.51	0.99
b2	.045	.055	1.14	1.40
c	.016	.029	0.40	0.74
c2	.045	.055	1.14	1.40
D	.340	.380	8.64	9.65
D1	.315	.350	8.00	8.89
E	.380	.410	9.65	10.41
E1	.245	.320	6.22	8.13
e	.100 BSC	2.54		BSC
L	.575	.625	14.61	15.88
L1	.090	.110	2.29	2.79
L2	.040	.055	1.02	1.40
L3	.050	.070	1.27	1.78
L4	0	.005	0	0.13

TO-220 Outline

$\begin{array}{ll}\text { Pins: } & 1 \text { - Gate } 2 \text { - Drain } \\ & 3 \text {-Source }\end{array}$

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.170	.190	4.32	4.83
b	.025	.040	0.64	1.02
b1	.045	.065	1.15	1.65
c	.014	.022	0.35	0.56
D	.580	.630	14.73	16.00
E	.390	.420	9.91	
e	.100		BSC	10.66
F	.045	.055	1.14	1.40
$H 1$.230	.270	5.85	6.85
$J 1$.090	.110	2.29	2.79
k	0	.015	0	0.38
L	.500	.550	12.70	13.97
L1	.110	.230	2.79	5.84
$\varnothing P$.139	.161	3.53	4.08
Q	.100	.125	2.54	3.18

Figure 1. Output Characteristics at $25^{\circ} \mathrm{C}$

Figure 3. Output characteristics at $125^{\circ} \mathrm{C}$

Figure 5. $\mathrm{R}_{\mathrm{DS}(0 n)}$ normalized to $0.5 \mathrm{I}_{\mathrm{D} 25}$ value vs. I_{D}

Figure 2. Extended Output Characteristics at $125^{\circ} \mathrm{C}$

Figure 4. Admittance Curves

Figure 6. $\mathrm{R}_{\mathrm{DS}(\text { (on })}$ normalized to $0.5 \mathrm{I}_{\mathrm{D} 25}$ value vs. T_{J}

Figure 7. Gate Charge

Figure 9. Forward Voltage Drop of the Intrinsic Diode

Figure 11. Transient Thermal Resistance

Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ixys manufacturer:
Other Similar products are found below :
CPC5603C MCC200-14io1 MCC220-16io1 MCC95-18io1B MDD172-14N1 MDD255-16N1 MDD312-18N1 MDD312-22N1 MEK60004DA MIXA30W1200TED MKI75-06A7 FUE30-12N1 FUS45-0045B DSA75-16B DSEI19-06AS IXDH20N120D1 IXDR30N120D1 IXFN50N120SK IXFR26N120P IXGK50N60B NRND LAA100P LAA120H LCA146A FMM75-01F GBO25-12NO1 GBO25-16NO1 PM1204X1 CYG2030 MCC132-16io1 MCD225-16io1 MDD175-34N1 MDO500-22N1 MII300-12A4 MKI75-06A7T IAA170P IXA17IF1200HJ IXA70I1200NA IXBH10N170 IXBT6N170 IXFN150N65X2 IXFP5N50P3 IXKN75N60C IXTT40N50L2
$\underline{\text { IXyH100N65C3 VHF28-14io5 LAA100L LCB110E DSSK48-0025B CLB30I1200HB VUE50-12NO1 }}$

