Polar ${ }^{\text {TM }}$ Power MOSFET
IXFN26N100P
HiPerFET ${ }^{\text {тм }}$
N-Channel Enhancement Mode
Avalanche Rated
Fast Intrinsic Diode

$V_{\text {Dss }}=1000 \mathrm{~V}$
$I_{\text {DS5 }}=23 \mathrm{~A}$
$R_{\text {DS(on) }} \leq 390 \mathrm{~m} \Omega$
$\mathrm{t}_{\mathrm{rr}} \leq 300 \mathrm{~ns}$
miniBLOC, SOT-227 B (IXFN)

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {DSS }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000	V
$V_{\text {dGR }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	1000	V
$\mathrm{V}_{\text {Gss }}$	Continuous	± 30	V
$\mathbf{V}_{\text {GSM }}$	Transient	± 40	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	23	A
I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, pulse width limited by T_{JM}	65	A
$\mathrm{I}_{\text {AR }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	13	A
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	1.0	J
dV/dt	$\mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DM}}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$	20	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	595	W
T,		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{JM}		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {L }}$	1.6 mm (0.062 in.) from case for 10 s	300	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$ 仡 $=1 \mathrm{~min}$	2500	V
	$\mathrm{I}_{\text {ISOL }} \leq 1 \mathrm{~mA} \quad \mathrm{t}=1 \mathrm{~s}$	3000	V
$M_{\text {d }}$	Mounting torque	1.5/13	Nm/lb.in.
	Terminal connection torque	1.3/11.5	Nm/lb.in.
Weight		30	g

Features

- International standard package
- Encapsulating epoxy meets UL 94 V-0, flammability classification
- miniBLOC with Aluminium nitride isolation
- Fast recovery diode
- Unclamped Inductive Switching (UIS) rated
- Low package inductance - easy to drive and to protect

Advantages

- Easy to mount
- Space savings
- High power density

Applications

- Switched-mode and resonant-mode power supplies
- DC-DC Converters
- Laser Drivers
- AC and DC motor controls
- Robotics and servo controls

IXFN26N100P
Symbol Test Conditions

($\mathrm{T}_{\mathrm{J}}=$	unless otherwise specified)	Min.	Typ.	Max.
g_{fs}	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13 \mathrm{~A}$, Note 1	13	22	S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\text {rss }} \end{aligned}$	$\} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 11.9 \\ 690 \\ 60 \end{array}$	nF pF pF
$\mathrm{R}_{\text {Gi }}$	Gate input resistance		1.50	Ω
$\begin{aligned} & \mathbf{t}_{\mathrm{d}(\text { on })} \\ & t_{\mathrm{r}} \\ & \mathbf{t}_{\mathrm{d}(\text { off })} \\ & \mathbf{t}_{\mathrm{f}} \\ & \hline \end{aligned}$	Resistive Switching Times $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=13 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=1 \Omega \text { (External) } \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \\ & 72 \\ & 50 \end{aligned}$	ns ns ns ns
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}(\mathrm{on})} \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \\ & \hline \end{aligned}$	$\} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=13 \mathrm{~A}$		$\begin{array}{r} 197 \\ 76 \\ 85 \end{array}$	nC nC nC
$\begin{aligned} & \mathbf{R}_{\mathrm{thJc}} \\ & \mathbf{R}_{\mathrm{thcs}} \\ & \hline \end{aligned}$			0.05	$\begin{array}{ll} 0.21 & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ \hline \end{array}$

Source-Drain Diode
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

SOT-227B Outline

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.240	1.255	31.50	31.88
B	.307	.323	7.80	8.20
C	.161	.169	4.09	4.29
D	.161	.169	4.09	4.29
E	.161	.169	4.09	4.29
F	.587	.595	14.91	15.11
G	1.186	1.193	30.12	30.30
H	1.496	1.505	38.00	38.23
J	.460	.481	11.68	12.22
K	.351	.378	8.92	9.60
L	.030	.033	0.76	0.84
M	.496	.506	12.60	12.85
N	.990	1.001	25.15	25.42
O	.078	.084	1.98	2.13
P	.195	.235	4.95	5.97
Q	1.045	1.059	26.54	26.90
R	.155	.174	3.94	4.42
S	.186	.191	4.72	4.85
T	.968	.987	24.59	25.07
U	-.002	.004	-0.05	0.1

Note 1: Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$; duty cycle, $\mathrm{d} \leq 2 \%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics @ $125^{\circ} \mathrm{C}$

Fig. 5. $R_{D S(o n)}$ Normalized to $I_{D}=13 A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 4. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Normalized to $\mathrm{I}_{\mathrm{D}}=13 \mathrm{~A}$ Value vs. Junction Temperature

Fig. 6. Maximum Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Capacitance

Fig. 8. Transconductance

Fig. 10. Gate Charge

Fig. 12. Maximum Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

