SiC Power MOSFET

$\mathrm{I}_{\mathrm{D} 25}$	$=47 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{DSS}}$	$=1200 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS}(\text { on }) \text { max }}$	$=50 \mathrm{~m} \Omega$

Part number
IXFN50N120SiC
G
(2)

$$
S(1,4)
$$

Features / Advantages:

- High speed switching with low capacitances
- High blocking voltage with low $\mathrm{R}_{\mathrm{DS}(o n)}$
- Easy to parallel and simple to drive
- Avalanche ruggedness
- Resistant to latch-up

Applications:

- Solar inverters
- High voltage DC/DC converters
- Motor drives
- Switch mode power supplies
- UPS
- Battery chargers
- Induction heating

Backside: isolated
UL pending

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate with Aluminium nitride isolation
- Advanced power cycling

MOSFET				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	
$\mathrm{V}_{\text {DSS }}$	drain source breakdown voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		1200			V
$\begin{aligned} & \mathrm{V}_{\mathrm{GSM}} \\ & \mathrm{~V}_{\mathrm{GS}} \\ & \hline \end{aligned}$	max transient gate source voltage continous gate source voltage	recommended operational value		$\begin{array}{r} -10 \\ -5 \end{array}$		$\begin{aligned} & +25 \\ & +20 \end{aligned}$	v
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{D} 25} \\ & \mathrm{I}_{\mathrm{D} 80} \\ & \mathrm{I}_{\mathrm{D} 100} \end{aligned}$	drain current	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$			47 35 30	A
$\mathrm{R}_{\text {DSon }}$	static drain source on resistance	$\mathrm{I}_{\mathrm{D}}=40 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} \end{aligned}$		40 75	50	$\mathrm{m} \Omega$ $\mathrm{m} \Omega$
$\mathrm{V}_{\text {GS(th) }}$	gate threshold voltage	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} \end{aligned}$	2.0	$\begin{aligned} & 2.6 \\ & 2.1 \end{aligned}$	4.0	V
$\mathrm{I}_{\text {DSS }}$	drain source leakage current	$\mathrm{V}_{\mathrm{DS}}=1200 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} \end{aligned}$		2 20	200	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {GSS }}$	gate source leakage current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			0.5	$\mu \mathrm{A}$
R_{G}	internal gate resistance					4.8	Ω
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \\ & \hline \end{aligned}$	input capacitance output capacitance reverse transfer (Miller) capacitance	$\} \mathrm{V}_{\mathrm{DS}}=1000 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz} \quad \mathrm{~T}_{\mathrm{V} J}=25^{\circ} \mathrm{C}$			$\begin{array}{r} 1900 \\ 160 \\ 13 \end{array}$		pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \end{aligned}$	total gate charge gate source charge gate drain (Miller) charge	$\} \mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=40 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 / 20 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{V} J}=25^{\circ} \mathrm{C}$			100 22 36		nC nC nC
$t_{d(\text { on })}$ t_{r} $t_{d(\text { off })}$ t_{f} $E_{\text {on }}$ $E_{\text {off }}$ $E_{\text {rec(off) }}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse reverse recovery losses at turn-off	Inductive switching $V_{D S}=800 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=40 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{GS}}=-5 / 20 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=10 \Omega$ (external) Freewheeling diode is Mosfet's body diode			$\begin{array}{r} 23 \\ 9 \\ 75 \\ 19 \\ 1.08 \\ 0.29 \\ 0.04 \end{array}$		ns ns ns ns mJ mJ mJ
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$ t_{r} $t_{d \text { (off) }}$ t_{f} $E_{\text {on }}$ $E_{\text {off }}$ $E_{\text {rec(off) }}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse reverse recovery losses at turn-off	Inductive switching $V_{D S}=800 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=40 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{VJ}}=150^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{GS}}=-5 / 20 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=10 \Omega$ (external) Freewheeling diode is Mosfet's body diode			$\begin{array}{r} 23 \\ 9 \\ 100 \\ 22 \\ 1.48 \\ 0.35 \\ 0.10 \end{array}$		ns ns ns ns mJ mJ mJ
$\begin{aligned} & \mathbf{R}_{\mathrm{thhJC}} \\ & \mathbf{R}_{\mathrm{th} \mathrm{H}} \\ & \hline \end{aligned}$	thermal resistance junction to case thermal resistance junction to heatsink with heatsink compound; IXYS test setup				0.62	0.55	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$

Source-Drain Diode				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	
$\mathrm{V}_{\text {SD }}$	forward voltage drop	$\mathrm{I}_{\mathrm{F}}=40 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{V},}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5.2 \\ & 4.6 \end{aligned}$		V
$\begin{aligned} & \mathrm{t}_{\mathrm{rr}} \\ & \mathrm{Q}_{\mathrm{RM}} \\ & \mathrm{I}_{\mathrm{RM}} \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt} \\ & \hline \end{aligned}$	reverse recovery time reverse recovery charge (intrinsic diode) max. reverse recovery current current slew rate	$V_{G S}=-5 \mathrm{~V} ; I_{F}=40 \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}=800 \mathrm{~V}$ Mosfet gate drive: $\mathrm{V}_{\mathrm{GS}}=-5 / 20 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=10 \Omega$	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$		$\begin{array}{r} 16 \\ 330 \\ 35 \\ 4800 \end{array}$		ns nC A $\mathrm{A} / \mu \mathrm{s}$
$\begin{aligned} & \mathrm{t}_{\mathrm{rr}} \\ & \mathbf{Q}_{\mathrm{RM}} \\ & \mathrm{I}_{\mathrm{RM}} \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt} \end{aligned}$	reverse recovery time reverse recovery charge (intrinsic diode) max. reverse recovery current current slew rate	$V_{G S}=-5 \mathrm{~V} ; \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A} ; \mathrm{V}_{\mathrm{R}}=800 \mathrm{~V}$ Mosfet gate drive: $\mathrm{V}_{\mathrm{GS}}=-5 / 20 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=10 \Omega$	$\mathrm{T}_{\mathrm{vJ}}=150^{\circ} \mathrm{C}$		$\begin{array}{r} 26 \\ 810 \\ 45 \\ 4600 \end{array}$		ns nC A $\mathrm{A} / \mu \mathrm{s}$

Note:

When using SiC Body Diode the maximum recommended $\mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}$
IXYS reserves the right to change limits, test conditions and dimensions.

Product Marking

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	IXFN50N120SiC	IXFN50N120SiC	Tube	10	515282

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches	
	min	\max	min	\max
A	31.50	31.88	1.240	1.255
B	7.80	8.20	0.307	0.323
C	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
H	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
M	12.50	13.10	0.492	0.516
N	25.15	25.42	0.990	1.001
O	1.95	2.13	0.077	0.084
P	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
T	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Z	2.50	2.70	0.098	0.106

G

S (1, 4)

Curves

Fig. 1 Typical output characteristics $\left(-25^{\circ} \mathrm{C}\right)$

Fig. 3 Typical output characteristics $\left(150^{\circ} \mathrm{C}\right)$

Fig. $5 \mathrm{R}_{\mathrm{DS}(\text { on })}$ versus drain current

Fig. 2 Typical output characteristics $\left(25^{\circ} \mathrm{C}\right)$

Fig. $4 \mathrm{R}_{\mathrm{DS}(0 n)}$ normalized vs. junction temperature $\mathrm{T}_{\mathrm{V},}$

Fig. $6 R_{D S(o n)}$ versus junction temperature $T_{V J}$

Curves

Fig. 7 Norm. breakdow $\mathrm{V}_{\mathrm{DSS}}$ \& treshhold voltage V_{TH} versus junction temperature $\mathrm{T}_{\mathrm{V},}$

Fig. 9 Typical forward transconductance

Fig. 11 Forward voltage drop of intrinsic diode versus V_{DS} measured at $25^{\circ} \mathrm{C}$

Fig. 8 Typical transfer characteristics

Fig. 10 Forward voltage drop of intrinsic diode versus V_{DS} measured at $-55^{\circ} \mathrm{C}$

Fig. 12 Forward voltage drop of intrinsic diode versus $V_{D S}$ measured at $150^{\circ} \mathrm{C}$

Curves

Fig. 13 Typical switching energy
versus drain current

Fig. 15 Typical switching energy versus external gate resistor

Fig. 17 Typical turn on gate charge, trendline

Fig. 14 Typical switching energy versus temperature

Fig. 16 Typical switching time versus external gate resistor

Fig. 18 Typical transient thermal impedance

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

