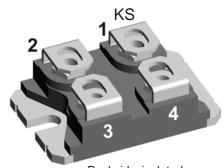
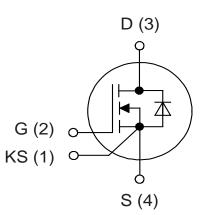
LIXYS

SiC Power MOSFET


Kelvin Source gate connection

Part number IXFN70N120SK



preliminary

I _{D25}	=	68	Α
V _{DSS}	=	1200	V
R _{DS(on) max}	=	34	$\mathbf{m}\Omega$

Backside: isolated **UL** pending

Features / Advantages:

- High speed switching with low capacitances
- High blocking voltage with low R_{DS(on)}
- · Easy to parallel and simple to drive
- Resistant to latch-up
- Real Kelvin source connection

Applications:

- Solar inverters
- High voltage DC/DC converters
- Motor drives
- Switch mode power supplies
- UPS
- Battery chargers
- Induction heating

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate with Aluminium nitride isolation
- Advanced power cycling

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales

office. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office. Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

IXYS reserves the right to change limits, test conditions and dimensions.

<sup>to perform joint risk and quality assessments;
the conclusion of quality agreements;</sup>

⁻ to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

preliminary

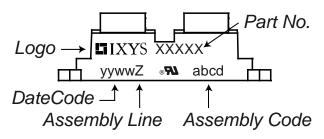
MOSFET					Rating	s	
Symbol	Definitions	Conditions		min.	typ.	max.	
V _{DSS}	drain source breakdown voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 100 \mu\text{A}$		1200			V
V _{GSM} V _{GS}	max transient gate source voltage continous gate source voltage	recommended operational value		-10 -5		+25 +20	V V
I _{D25} I _{D80} I _{D100}	drain current	V _{GS} = 20 V	$T_{c} = 25^{\circ}C$ $T_{c} = 80^{\circ}C$ $T_{c} = 100^{\circ}C$			68 55 48	A A A
R_{DSon}	static drain source on resistance	$I_{\rm D} = 50 \text{ A}; V_{\rm GS} = 20 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 175^{\circ}C$		25 52	34	mΩ mΩ
V _{GS(th)}	gate threshold voltage	$I_{\rm D}=~15~m\text{A};V_{\rm GS}=V_{\rm DS}$	$\begin{array}{l} T_{\rm VJ} = ~25^{\circ}{\rm C} \\ T_{\rm VJ} = ~175^{\circ}{\rm C} \end{array}$	2.0	2.6 2.1	4.0	V V
I _{DSS}	drain source leakage current	V _{DS} = 1200 V; V _{GS} = 0 V	$T_{VJ} = 25^{\circ}C$		2	100	μA
I _{GSS}	gate source leakage current	$V_{DS} = 0 \text{ V}; V_{GS} = 20 \text{ V}$	$T_{VJ} = 25^{\circ}C$			0.6	μA
R _G	internal gate resistance	$f = 1 \text{ MHz}, V_{AC} = 25 \text{ mV}, \text{ ESR of } C_{ISS}$			1.1		Ω
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer (Miller) capacitance	V _{DS} = 1000 V; V _{GS} = 0 V; f = 1 MHz	$T_{VJ} = 25^{\circ}C$		2790 220 15		pF pF pF
Q _g Q _{gs} Q _{gd}	total gate charge gate source charge gate drain (Miller) charge	$V_{DS} = 800 \text{ V}; I_D = 50 \text{ A}; V_{GS} = -5/20 \text{ V}$	$T_{VJ} = 25^{\circ}C$		161 46 50		nC nC nC
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \\ E_{rec(off)} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse reverse recovery losses at turn-off	Inductive switching $V_{DS} = 800 \text{ V}; I_D = 50 \text{ A}$ $V_{GS} = -5 / 20 \text{ V}; R_G = 15 \Omega$ (external) Freewheeling diode is Mosfet's body			30 15 82 27 1.35 0.76 0.13		ns ns ns mJ mJ mJ
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \\ E_{rec(off)} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse reverse recovery losses at turn-off	Inductive switching $V_{DS} = 800 \text{ V}; I_D = 50 \text{ A}$ $V_{GS} = -5 / 20 \text{ V}; R_G = 15 \Omega$ (external) Freewheeling diode is Mosfet's body			28 12 125 28 1.71 0.78 0.29		ns ns ns mJ mJ mJ
R _{thJC} R _{thJH}	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink compound; IXYS test	setup		0.6	0.45	K/W K/W

Source-Drain Diode			Ratings				
Symbol	Definitions	Conditions		min.	typ.	max.	
V_{SD}	forward voltage drop	$I_{F} = 50 \text{ A}; V_{GS} = -5 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 150^{\circ}C$		4.3 3.7		V V
t _{rr} Q _{RM} I _{RM} dI _F /dt	reverse recovery time reverse recovery charge (intrinsic diode) max. reverse recovery current current slew rate	$V_{GS} = -5 \text{ V}; \text{ I}_{\text{F}} = 50 \text{ A}; \text{ V}_{\text{R}} = 800 \text{ V}$ Mosfet gate drive: $V_{GS} = -5 \text{ / } 20 \text{ V}; \text{ R}_{\text{G}} = 15 \Omega$	T _{vJ} = 25°C		35 0.52 33 3380		ns µC A A/µs
t _{rr} Q _{RM} I _{RM} dI _F /dt	reverse recovery time reverse recovery charge (intrinsic diode) max. reverse recovery current current slew rate	V_{GS} = -5 V; I _F = 50 A; V _R = 800 V Mosfet gate drive: V _{GS} = -5 / 20 V; R _G = 15 Ω	T _{vJ} = 150°C		30 1.23 59 4250		ns μC Α Α/μs

Note:

When using SiC Body Diode the maximum recommended $V_{\mbox{\tiny GS}}$ = -5V

IXYS reserves the right to change limits, test conditions and dimensions.

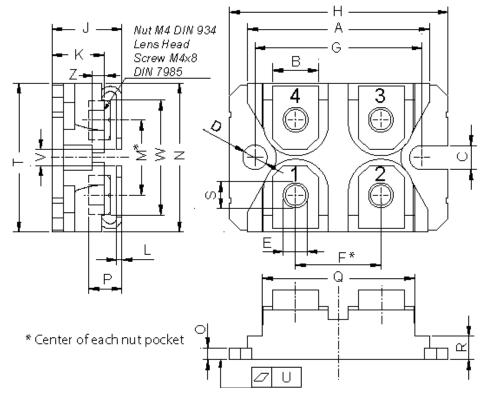

IXFN70N120SK

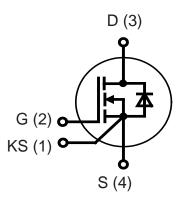
preliminary

Package SOT-227B (minibloc)

				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
IRMS	RMS current	per terminal					А
T _{stg}	storage temperature			-40		150	°C
T _{op}	operation temperature			-40		150	°C
T _{vJ}	virtual junction temperature			-40		175	°C
Weight					30		g
M _D	mounting torque			1.1		1.5	Nm
Μ _τ	terminal torque			1.1		1.5	Nm
d _{Spp/App}	araanaga diatanaa an aurfaa	e striking distance through air	terminal to backside	10.5 / 3.2			mm
d _{Spb/Apb}	creepage distance on sunac	e Striking distance through an	terminal to terminal	8.6 / 6.8			mm
VISOL	isolation voltage	I _{ISOL} ≤ 1 mA; 50/60 Hz,	t = 1 sec.	3000			V
			t = 1 minute	2500			V

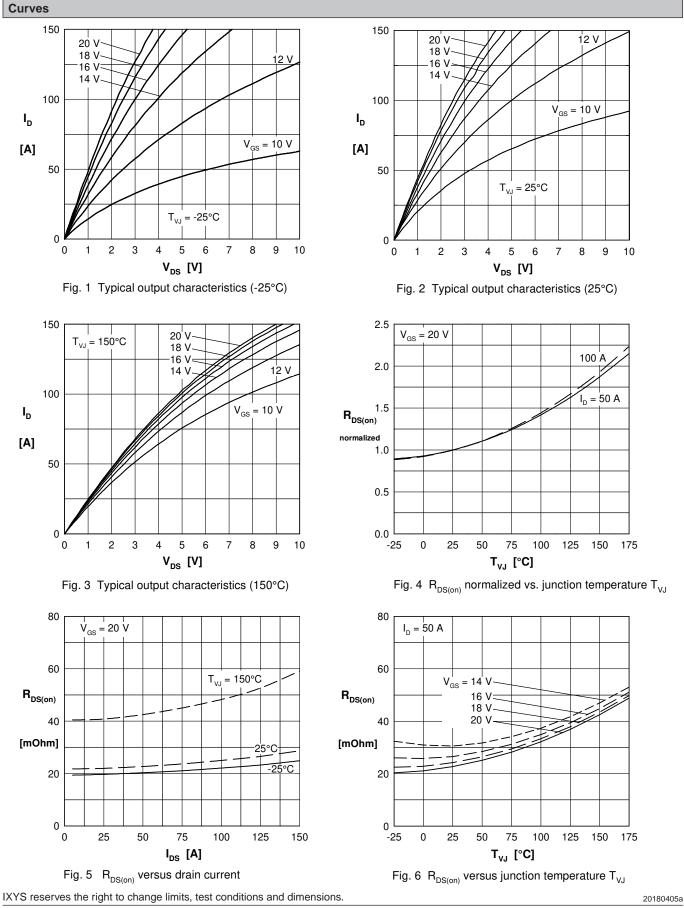
Product Marking


Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	IXFN70N120SK	IXFN70N120SK	Tube	10	517981


IXFN70N120SK

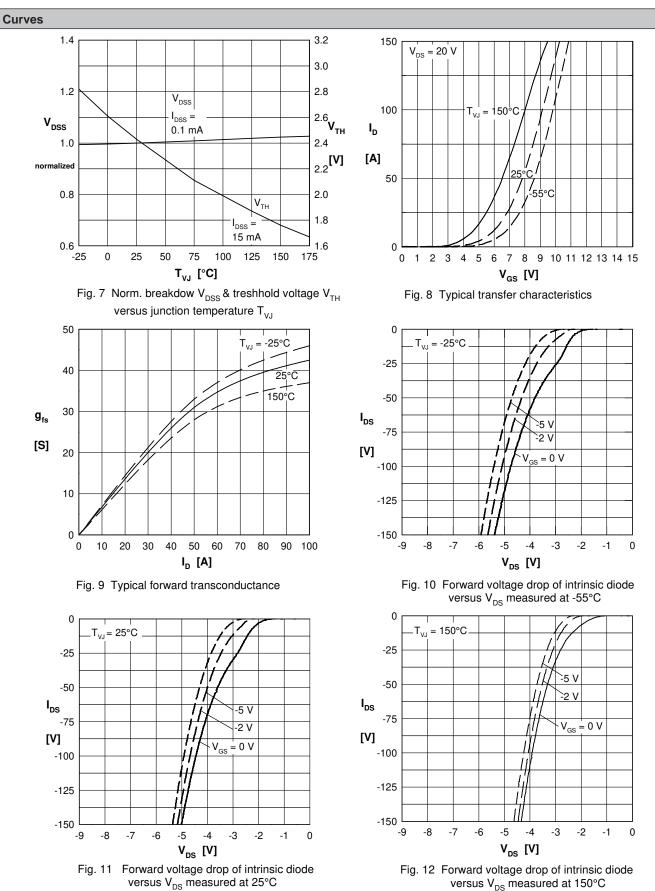
preliminary

Outlines SOT-227B (minibloc)


Dim.	Millir	neter	Inches		
Dim.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
B	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
E	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
К	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
Μ	12.50	13.10	0.492	0.516	
N	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Ρ	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Ζ	2.50	2.70	0.098	0.106	

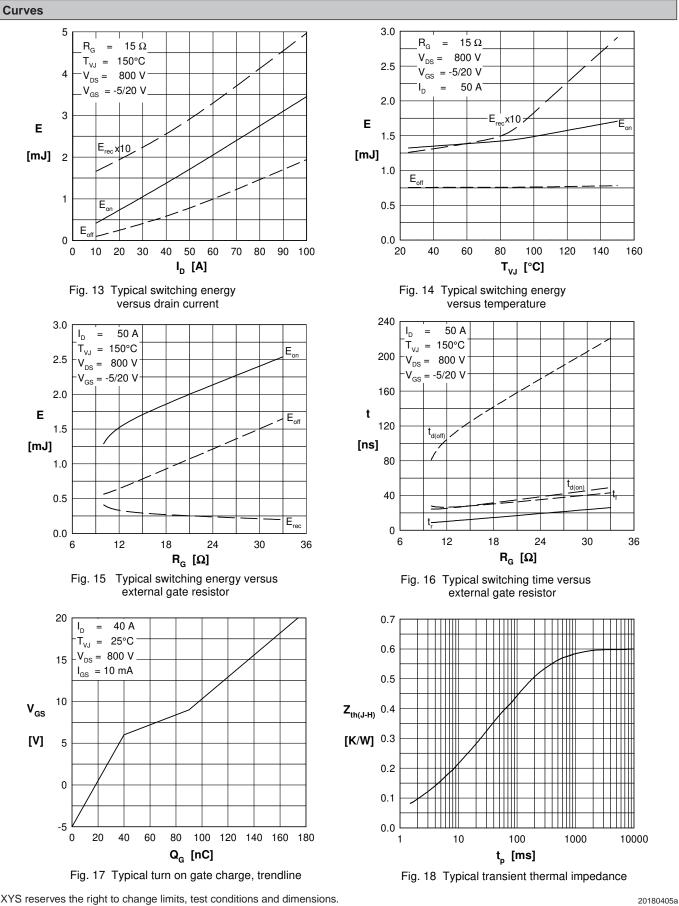
LIXYS

IXFN70N120SK


preliminary

IXFN70N120SK

preliminary



IXYS reserves the right to change limits, test conditions and dimensions.

IXFN70N120SK

preliminary

IXYS reserves the right to change limits, test conditions and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

<u>M252511FV</u> <u>DD260N12K-A</u> <u>DD380N16A</u>	DD89N1600K-	A APT2X21D	C60J APT58M	80J B522F-2-Y	YEC MSTC90-1	<u>16</u> <u>25.163.0653.1</u>
25.163.2453.0 25.163.4253.0 25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
<u>25.330.4753.1</u> <u>25.330.5253.1</u> <u>25.334.3253.1</u>	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	<u>T485F</u> <u>T485H</u>
<u>T512F-YEB</u> <u>T513F</u> <u>T514F</u> <u>T554</u> <u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
<u>25.332.4353.1</u> <u>25.350.1653.0</u> <u>25.350.2453.0</u>	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0						