## PolarHV ${ }^{\text {TM }}$ IGBT

IXGH28N60B3D1


| Symbol | Test Conditions | Maximum Ratings |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {ces }}$ | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ | 600 | V |
| $\mathrm{V}_{\mathrm{cGR}}$ | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$ | 600 | V |
| $\mathrm{V}_{\text {GES }}$ | Continuous | $\pm 20$ | V |
| $\mathrm{V}_{\text {GEM }}$ | Transient | $\pm 30$ | V |
| $\mathrm{I}_{\mathrm{C} 25}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 66 | A |
| $\mathrm{I}_{\mathrm{C} 110}$ | $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$ | 28 | A |
| $\mathrm{I}_{\text {F110 }}$ | $\mathrm{T}_{\mathrm{c}}=110^{\circ} \mathrm{C}$ | 10 | A |
| $\mathrm{I}_{\text {cm }}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$ | 150 | A |
| SSOA <br> (RBSOA) | $V_{G E}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=10 \Omega$ <br> Clamped inductive load @ $\leq 600 \mathrm{~V}$ | $\mathrm{I}_{\mathrm{CM}}=60$ | A |
| $\mathrm{P}_{\mathrm{c}}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 190 | W |
| T, |  | -55 ... +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {JM }}$ |  | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ |  | -55 ... +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | 1.6 mm (0.062 in.) from case for 10 seconds | 300 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {SOLD }}$ | Plastic body for 10 seconds | 260 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{M}_{\mathrm{d}}$ | Mounting torque (M3) | 1.13/10 | Nm/lb.in. |
| Weight |  | 6 | g |


| Symbol Test Conditions ( $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified) |  |  | Characteristic Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ( $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified) | Min. | Typ. | Max. |  |
| $\mathrm{BV}_{\text {ces }}$ | $\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$ |  | 600 |  |  | V |
| $\mathrm{V}_{\text {GE(th) }}$ | $\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {GE }}$ |  | 3.0 |  | 5.0 | V |
| $\mathrm{I}_{\text {CES }}$ | $\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {CES },} \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$ | $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ |  |  | $\begin{array}{r} 50 \\ 1.0 \end{array}$ | $\mu \mathrm{A}$ mA |
| $\mathrm{I}_{\text {GES }}$ | $\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$ |  |  |  | $\pm 100$ | nA |
| $\mathrm{V}_{\text {CE(sat) }}$ | $\mathrm{I}_{\mathrm{C}}=24 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$, Note 1 |  |  | 1.5 | 1.8 | V |

$\mathrm{V}_{\mathrm{CES}}=600 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C} 110}=28 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CE} \text { (sat) }} \leq 1.8 \mathrm{~V}$

TO-247 (IXGH)

$\mathrm{G}=$ Gate $\quad \mathrm{C}=$ Collector
$\mathrm{E}=$ Emitter $\quad \mathrm{TAB}=$ Collector

## Features

- Square RBSOA
- High current handling capability
- MOS Gate turn-on
- drive simplicity


## Applications

- PFC circuits
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- AC motor speed control
- DC servo and robot drives
- DC choppers

Symbol Test Conditions

| ( $T_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified) | Min. ${ }^{\text {T }}$ Typ. | Max. |
| :---: | :---: | :---: |
| $\mathbf{g}_{\mathrm{fs}} \quad \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$, Note 1 | 18 30 | S |
| $\left.\begin{array}{l}\mathrm{C}_{\text {ies }} \\ \mathrm{C}_{\text {oes }} \\ \mathrm{C}_{\text {res }}\end{array}\right\} \quad \mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ | $\begin{array}{r} 2320 \\ 176 \\ 24 \end{array}$ | pF pF pF |
| $\left.\begin{array}{l}\mathbf{Q}_{\mathrm{g}} \\ \mathbf{Q}_{\mathrm{ge}} \\ \mathbf{Q}_{\mathrm{gc}}\end{array}\right\} \quad \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.5 \cdot \mathrm{~V}_{\mathrm{CES}}$ | $\begin{aligned} & 62 \\ & 11 \\ & 23 \end{aligned}$ | nC nC nC |
|  | $\begin{array}{r} 19 \\ 24 \\ 0.34 \\ 125 \\ 100 \\ 0.65 \end{array}$ |  ns <br>  ns <br>  mJ <br> 200 ns <br> 160 ns <br> 1.2 mJ |
|  | $\begin{array}{r} 19 \\ 26 \\ 0.6 \\ 180 \\ 170 \\ 1.0 \end{array}$ | ns ns mJ ns ns mJ |
| $\begin{aligned} & \mathbf{R}_{\mathrm{thjc}} \\ & \mathbf{R}_{\mathrm{thnc}} \end{aligned}$ | 0.21 | $\begin{array}{r} 0.66^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$ |

## TO-247 (IXGH) Outline



| Terminals: |  | 1 - Gate <br> 3 - Source | $\begin{aligned} & 2 \text { - Drain } \\ & \text { Tab - Drain } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Dim. | Millimeter |  | Inches |  |
|  | Min. | Max. | Min. | Max. |
| A | 4.7 | 5.3 | . 185 | . 209 |
| $\mathrm{A}_{1}$ | 2.2 | 2.54 | . 087 | . 102 |
| $\mathrm{A}_{2}$ | 2.2 | 2.6 | . 059 | . 098 |
| b | 1.0 | 1.4 | . 040 | . 055 |
| $\mathrm{b}_{1}$ | 1.65 | 2.13 | . 065 | . 084 |
| $\mathrm{b}_{2}$ | 2.87 | 3.12 | . 113 | . 123 |
| C | . 4 | . 8 | . 016 | . 031 |
| D | 20.80 | 21.46 | . 819 | . 845 |
| E | 15.75 | 16.26 | . 610 | . 640 |
| e | 5.20 | 5.72 | 0.205 | 0.225 |
| L | 19.81 | 20.32 | . 780 | . 800 |
| L1 |  | 4.50 |  | . 177 |
| $\varnothing \mathrm{P}$ | 3.55 | 3.65 | . 140 | . 144 |
| Q | 5.89 | 6.40 | 0.232 | 0.252 |
| R | 4.32 | 5.49 | . 170 | . 216 |
| S | 6.15 | BSC | 242 | BSC |

## Reverse Diode (FRED)



Note 1: Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$; duty cycle, $\mathrm{d} \leq 2 \%$.

## ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

| IXYS MOSFETs and IGBTs are covered | 4,835,592 | 4,931,844 | 5,049,961 | 5,237,481 | 6,162,665 | 6,404,065 B1 | 6,683,344 | 6,727,585 | 7,005,734 B2 | 7,157,338B2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| by one or moreof the following U.S. patents: | 4,850,072 | 5,017,508 | 5,063,307 | 5,381,025 | 6,259,123 B1 | 6,534,343 | 6,710,405 B2 | 6,759,692 | 7,063,975 B2 |  |
|  | 4,881,106 | 5,034,796 | 5,187,117 | 5,486,715 | 6,306,728 B1 | 6,583,505 | 6,710,463 | 6,771,478 B2 | 7,071,537 |  |

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Transistors category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30 GT50JR22(STA1ES) TIG058E8-TL-H IGW40N120H3FKSA1 VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG RJH60F3DPQ-A0\#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG

IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 QP12W05S-37A IHFW40N65R5SXKSA1 APT70GR120J APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1 IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1 XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1 FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0\#T2 IKP20N60TXKSA1 IHW20N65R5XKSA1

