

GenX3™ 1200V IGBTs

IXGK120N120B3 IXGX120N120B3

High Speed Low Vsat PT IGBTs for 3-20 kHz Switching

$\mathbf{V}_{\mathtt{CES}}$	=	1200V
I _{C90}	=	120A
V _{CE(sat)}	≤	3.0V

TO-264 (IXGK)

PLUS 247™ (IXGX)

G	= Gate	E	=	Emitter
С	= Collector	TAB	=	Collector

Features

- Optimized for Low Conduction and Switching Losses
- Square RBSOA
- International Standard Packages

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	1200	V	
V _{CGR}	$T_{_{\mathrm{J}}}$ = 25°C to 150°C, $R_{_{\mathrm{GE}}}$ = 1M Ω	1200	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _c = 25°C (Chip Capability)	200	A	
I _{C90}	$T_{c} = 90^{\circ}C$	120	Α	
LRMS	Terminal Current Limit	120	Α	
I _{CM}	$T_{\rm C}$ = 25°C, 1ms	370	Α	
SSOA	$V_{GE} = 15V, T_{V,J} = 125^{\circ}C, R_{G} = 2\Omega$	I _{CM} = 240	A	
(RBSOA)	Clamped Inductive Load	$V_{CES} \le 1200$	V	
P _c	T _c = 25°C	830	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062 in.) from Case for 10	260	°C	
M _d	Mounting Torque (IXGK)	1.13/10	Nm/lb.in.	
F _c	Mounting Force (IXGX)	20120/4.527	N/lb.	
Weight	TO-264	10	g	
	PLUS247	6	g	

•	est Conditions ess Otherwise Specified)		Charac Min.	teristic \ Typ.	/alues Max.	
BV _{CES} I _C	$_{c} = 250 \mu A, V_{CE} = 0 V$		1200			V
V _{GE(th)} I _C	$_{c}$ = 1mA, $V_{CE} = V_{GE}$		3.0		5.0	V
I _{CES} V	$V_{CE} = V_{CES, V_{GE}} = 0V$	T _J = 125°C				μA mA
I _{GES} V	$V_{CE} = 0V, V_{GE} = \pm 20V$				±400	nA
V _{CE(sat)}	= 100A, V _{GE} = 15V, Note	:1		2.4	3.0	V

Symbol Test Conditions $(T_J = 25^{\circ}C, Unless Otherwise Specified)$			Characteristic Values Min. Typ. Max.			
g _{fs}	I _C = 60A, V _{CE} = 10V, Note 1	40	70	S		
C _{ies}			9700	pF		
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1 MHz$		670	pF		
C _{res}			255	pF		
Q _{g(on)}			470	nC		
\mathbf{Q}_{ge}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \bullet \rm V_{\rm CES}$		67	nC		
Q _{gc}			190	nC		
t _{d(on)}			36	ns		
t _{ri}	Inductive load, T _J = 25°C		88	ns		
E _{on}	$I_{\rm C}$ = 100A, $V_{\rm GE}$ = 15V		5.5	mJ		
t _{d(off)}	$V_{CE} = 600V, R_{G} = 2\Omega$		275	ns		
t _{fi}	Note 2		145	ns		
E _{off}			5.8	mJ		
t _{d(on)}			34	ns		
t _{ri}	Inductive load, T _J = 125°C		88	ns		
E _{on}	$I_{\rm C} = 100 \text{A}, V_{\rm GE} = 15 \text{V}$		6.1	mJ		
t _{d(off)}	$V_{CE} = 600V, R_{G} = 2\Omega$		315	ns		
t _{fi}	Note 2		570	ns		
E _{off}			10.3	mJ		
R _{thJC}				0.15 °C/W		
R _{thCK}			0.15	°C/W		

TO-264 (IXGK) Outline						
D E O S O S O S O S O S O S O S O S O S O						
BOX SDE A						
	0.24	INCH	IES	MILLIM	FTFRS	1
	SYM	MIN	MAX	MIN	MAX	1
	A	.185	.209	4.70	5.31	
	A1	.102	.118	2.59	3.00	
	ь	.037	.055	0.94	1.40	
	b1	.087	.102	2.21	2.59	
	b2 c	.110	.126	2.79	3.20	
	D	1.007	1.047	0.43 25.58	0.74 26.59	
	E	.760	.799	19.30	20.29	
	e	.760		5.46		-
	J	.000	.010	0.00	0.25	-
	K	.000	.010	0.00	0.25	1
		.779	.842	19.79	21.39	
	L1	.087	.102	2.21	2.59	1
	ØP	.122	.138	3.10	3.51	
	Q	.240	.256	6.10	6.50	
	Q1	.330	.346	8.38	8.79	1
	ØR	.155	.187	3.94	4.75	1
	ØR1	.085	.093	2.16	2.36	1
	S	.243	.253	6.17	6.43	1

Note

- 1. Pulse Test, $t \le 300\mu s$, Duty Cycle, $d \le 2\%$.
- 2. Switching Times may Increase for V_{CE} (Clamp) > 0.8 V_{CES} , Higher T₁ or Increased R₆.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

PLUS 247™ (IXGX) Outline

Terminals: 1 - Gate

2 - Drain (Collector) 3 - Source (Emitter)

Dim.	Millimeter		Inc	hes	
	Min.	Max.	Min. Max		
Α	4.83	5.21	.190	.205	
A,	2.29	2.54	.090	.100	
A ₂	1.91	2.16	.075	.085	
b	1.14	1.40	.045	.055	
b₁	1.91	2.13	.075	.084	
b ₂	2.92	3.12	.115	.123	
С	0.61	0.80	.024	.031	
D	20.80	21.34	.819	.840	
E	15.75	16.13	.620	.635	
е	5.45	BSC	.215	BSC	
L	19.81	20.32	.780	.800	
L1	3.81	4.32	.150	.170	
Q	5.59	6.20	.220	0.244	
R	4.32	4.83	.170	.190	

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

 748152A
 FGH60T65SHD_F155
 APT100GT60B2RG
 APT13GP120BG
 APT20GN60BG
 APT20GT60BRDQ1G
 APT25GN120B2DQ2G

 APT35GA90BD15
 APT36GA60BD15
 APT40GP60B2DQ2G
 APT40GP90B2DQ2G
 APT50GN120B2G
 APT50GT60BRG

 APT64GA90B2D30
 APT70GR120J
 NGTB10N60FG
 NGTB30N60L2WG
 NGTG25N120FL2WG
 IGP30N60H3XKSA1
 STGB15H60DF

 STGFW20V60DF
 STGFW30V60DF
 STGFW40V60F
 STGWA25H120DF2
 FGB3236_F085
 APT25GN120BG
 APT25GR120S

 APT30GN60BDQ2G
 APT30GN60BG
 APT30GP60BG
 APT30GS60BRDQ2G
 APT30N60BC6
 APT35GP120JDQ2
 APT36GA60B

 APT45GR65B2DU30
 APT50GP60B2DQ2G
 APT68GA60B
 APT70GR65B
 APT70GR65B2SCD30
 GT50JR22(STA1ES)
 TIG058E8-TL-H

 IDW40E65D2
 NGTB50N60L2WG
 STGB10H60DF
 STGB20V60F
 STGB40V60F
 STGFW80V60F
 IGW40N120H3FKSA1

 RJH60D7BDPQ-E0#T2
 APT40GR120B