

High Voltage IGBT with Diode

IXGX 32N170H1

	_	I c
G_	(.k	力
ŏ-	۲۲	5
		J _E

Symbol	Test Conditions	Maximum Ratings			
$\overline{\mathbf{V}_{\mathtt{CES}}}$	T _J = 25°C to 150°C	1700	V		
$\mathbf{V}_{\mathtt{CGR}}$	$T_{_{ m J}}$ = 25°C to 150°C; $R_{_{ m GE}}$ = 1 M Ω	1700	V		
V _{GES}	Continuous	±20	V		
$\mathbf{V}_{\mathtt{GEM}}$	Transient	±30	V		
I _{C25}	T _C = 25°C	75	A		
I _{C90}	$T_{c} = 90^{\circ}C$	32	A		
I _{CM}	$T_c = 25$ °C, 1 ms	200	А		
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 5 Ω Clamped inductive load	I _{CM} = 90 © 0.8 V _{CES}	A		
t _{sc}	$T_J = 125^{\circ}C, V_{CE} = 1200 \text{ V}; V_{GE} = 15 \text{ V}, B_G$	= 10Ω 10	μs		
P _c	T _c = 25°C	350	W		
T_J		-5 5 +150	°C		
T_{JM}		150	°C		
T _{stg}		-55 + 150	°C		
F _c	Mounting force with chip	22130/530	N/lb		
	ead temperature for soldering 062 in.) from case for 10 s	300	°C		
Weight		6	g		

Symbol Test Conditions	Characteristic Values		
	$(T_{\perp} = 25^{\circ}C, \text{ unless of})$	herwi	se specified)
	min.	typ.	max.

			١٠.		
BV _{CES}	$I_{c} = 1 \text{mA}, V_{GE} = 0 \text{ V}$ $I_{c} = 250 \mu\text{A}, V_{CE} = V_{GE}$	1700 3.0		5.0	V V
I _{CES}	$V_{CE} = 0.8 \cdot V_{CES}$ $V_{GE} = 0 V$ N	$T_{J} = 25^{\circ}C$ ote 1 $T_{J} = 125^{\circ}C$		500 8	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	2.5 3.0	3.3	V

= 1700 **V**_{CES} **75** 290 ns $\boldsymbol{t}_{\text{fi(typ)}}$

G = Gate. Emitter,

C = Collector, TAB = Collector

Features

- High current handling capability
- MOS Gate turn-on
 - drive simplicity
- Rugged NPT structure
- Molding epoxies meet UL 94 V-0 flammability classification

Applications

- Capacitor discharge & pulser circuits
- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies

Symbol	Test Conditions Cha $(T_J = 25^{\circ}\text{C}, \text{ unless c} \text{min.})$		istic Values se specified) max.
g _{fs}	$I_{C} = I_{C25}$; $V_{CE} = 10 \text{ V}$ 25 Note 2	33	S
C _{ies}		3500	pF
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	250	pF
\mathbf{C}_{res}		40	pF
$\overline{\mathbf{Q}_{q}}$		155	nC
\mathbf{Q}_{ge}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{V}, V_{\rm CE} = 0.5 \text{V}_{\rm CES}$	30	nC
Q _{gc})	51	nC
t _{d(on)}	Inductive load, T _J = 25°C	45	ns
t _{ri}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V$	38	ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 2.7 \Omega, V_{\rm CE} = 0.8 V_{\rm CES}$	270	500 ns
t _{fi}	Note 3	250	500 ns
E _{off}		15	25 mJ
t _{d(on)}	Inductive load, T _J = 125°C	48	ns
t _{ri}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V$	42	ns
$\mathbf{E}_{ ext{on}}$	$R_{\rm G} = 2.7 \Omega, V_{\rm CE} = 0.8 V_{\rm CES}$ Note 3	6.0 360	mJ ns
t _{fi}		560	ns
E _{off}		22	mJ
R _{thJC}			0.35 K/W
R_{thCK}		0.15	K/W

F	PLUS247 Outline (IXGX)					
PLUSZ47 Outline (IXGX)						
		INCH	FS	MI I IN	IE TERS	
L	SYM	MIN	MAX	MIN	MAX	
4	Α	.190	.205	4.83	5.21	
T	A1	.090	.100	2.29	2.54	
1	A2	.075	.085	1.91	2.16	
1	ь	.045	.055	1.14	1.40	
1	ь1	.075	.084	1.91	2.13	
1	ь2	.115	.123	2.92	3.12	
	С	.024	.031	0.61	0.80	
4	D	.819	.840	20.80	21.34	
	Ē	620	.635	15.75	16.13	
	e	.215		5.45		
		.780	.800	19.81	20.32	
	1	.150	.170	3.81	4.32	
Л	Q	.220	.244	5.59	6.20	
	R	.170	.190	4.32	4.83	
	S	.520	.540	13.21	13.72	
	Ť	.620	.640	15.75	16.26	
	U	.065	.080	1.65	2.03	
	1 - GATE 2 - DRAIN (COLLECTOR) 3 - SOURCE (EMITTER) 4 - NO CONNECTION NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-247AD except screw hole.					

Reverse Diode (FRED) (Note 4)

Characteristic Values

25°C (inless otherwise specified)

Symbol	Test Conditions min.	therwis typ.	se specified) max.
V _F	$I_F = 70A$, $V_{GE} = 0$ V, Pulse test, $t \le 200$ µs, duty cycle $d \le 2$ %		2.7 V
$\left\{egin{array}{c} \mathbf{I}_{RM} \\ \mathbf{t}_{rr} \end{array}\right\}$	$I_{\mu} = 50A$, $V_{GE} = 0 V$, $-di_{F}/dt = 800 A/\mu s$ $V_{R} = 600 V$	50 150	A ns
R _{thJC}			0.4 K/W

- Notes: 1. Device must be heatsunk for high temperature leakage current measurements to avoid thermal runaway.
 - 2. Pulse test, $t \le 300 \ \mu s$, duty cycle $\le 2 \ \%$
 - 3. Switching times may increase for $V_{\rm CE}$ (Clamp) > 0.8 $V_{\rm CES}$, higher T $_{\rm J}$ or increased R $_{\rm G}$.
 - See DH60-18A and IXGH32N170A datasheets for additional characteristics

IXYS reserves the right to change limits, test conditions, and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

748152A APT20GT60BRDQ1G APT50GT60BRG NGTB10N60FG STGFW20V60DF APT30GP60BG APT45GR65B2DU30
GT50JR22(STA1ES) TIG058E8-TL-H IGW40N120H3FKSA1 VS-CPV364M4KPBF NGTB25N120FL2WAG NGTG40N120FL2WG
RJH60F3DPQ-A0#T0 APT40GR120B2SCD10 APT15GT120BRG APT20GT60BRG NGTB75N65FL2WAG NGTG15N120FL2WG
IXA30RG1200DHGLB IXA40RG1200DHGLB APT70GR65B2DU40 NTE3320 QP12W05S-37A IHFW40N65R5SXKSA1 APT70GR120J
APT35GP120JDQ2 IKZA40N65RH5XKSA1 IKFW75N65ES5XKSA1 IKFW50N65ES5XKSA1 IKFW50N65EH5XKSA1
IKFW40N65ES5XKSA1 IKFW60N65ES5XKSA1 IMBG120R090M1HXTMA1 IMBG120R220M1HXTMA1 XD15H120CX1
XD25H120CX0 XP15PJS120CL1B1 IGW30N60H3FKSA1 STGWA8M120DF3 IGW08T120FKSA1 IGW75N60H3FKSA1
FGH60N60SMD_F085 FGH75T65UPD STGWA15H120F2 IKA10N60TXKSA1 IHW20N120R5XKSA1 RJH60D2DPP-M0#T2
IKP20N60TXKSA1 IHW20N65R5XKSA1