Linear Power MOSFET With Extended FBSOA

N-Channel Enhancement Mode

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\mathrm{Dss}}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	500	V
$\mathrm{V}_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	500	V
$\mathrm{V}_{\text {GS }}$	Continuous	± 30	V
$\mathrm{V}_{\text {GSM }}$	Transient	± 40	V
$\mathrm{I}_{\mathrm{D} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	46	A
$I_{\text {dM }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, pulse width limited by T_{JM}	100	A
$\mathrm{I}_{\text {AR }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	46	A
$\mathrm{E}_{\text {AR }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	60	mJ
$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	1.5	J
P_{D}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	700	W
TJ		to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISoL }}$	50/60 Hz, RMS, \quad T = 1 min	2500	V
	$\mathrm{I}_{\text {IsoL }} \leq 1 \mathrm{~mA}, \quad \mathrm{~T}=1 \mathrm{~s}$	3000	V
$M_{\text {d }}$	Mounting torque for Base Plate	1.5/13	Nm/lb.in.
	Terminal connection torque	1.3/11.5	Nm/lb.in.
Weight		30	g

Symbol	Test Conditions	Characteristic Values $=25^{\circ} \mathrm{C}$, unless otherwise specified)		
		Min.	Typ.	Max.
$\mathrm{BV}_{\text {DSs }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	500		V
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	3		6 V
$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			$\pm 200 \mathrm{nA}$
$\mathrm{I}_{\text {DSS }}$	$\begin{aligned} & V_{D S}=V_{D S S} \\ & V_{G S}=0 V \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{rr} 50 & \mu \mathrm{~A} \\ 1 & \mathrm{~mA} \end{array}$
$\mathrm{R}_{\text {DS(on) }}$	$V_{G S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$ Note 1			0.16 ת

IXTN46N50L

$V_{\text {DSs }}$	$=500$	V
$\mathrm{I}_{\text {D25 }}$	$=46$	A
$\mathrm{R}_{\mathrm{DS}(\text { on) }}$	≤ 0.16	Ω

miniBLOC, SOT-227 B (IXTN)

- E153432

> G = Gate
$D=$ Drain
$S=$ Source
Either Source terminal S can be used as the Source terminal or the Kelvin Source (gate return) terminal.

Features

- Designed for linear operation
- International standard package
- Molding epoxy meets UL94 V-0 flammability classification
- miniBLOC with Aluminium nitride isolation

Applications

- Programmable loads
- Current regulators
- DC-DC converters
- Battery chargers
- DC choppers
- Temperature and lighting controls

Advantages

- Easy to mount
- Space savings
- High power density

Symbol
Test Conditions
Characteristic Values ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified) Min. ${ }^{\text {Typ. }}$ Max.

$\mathrm{g}_{\text {fs }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$, Note 1 $\quad 7$	10	13	S
$\mathrm{C}_{\text {iss }}$		7000		pF
$\mathrm{C}_{\text {oss }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	900		pF
$\mathrm{C}_{\text {rss }}$		170		pF
$\mathrm{t}_{\text {d(on) }}$		40		ns
t_{r}	$\mathrm{V}_{\text {GS }}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0.5 \cdot \mathrm{~V}_{\text {DSS }} \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{l}_{\text {D25 }}$	50		ns
$\mathrm{t}_{\text {d(off) }}$	$\mathrm{R}_{\mathrm{G}}=2 \Omega$ (External),	80		ns
		42		ns
$\mathrm{Q}_{\text {g(on) }}$		260		nc
Q_{gs}	$\mathrm{V}_{\text {GS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \cdot \mathrm{~V}_{\text {DSS }} \mathrm{I}_{\mathrm{D}}=0.5 \cdot \mathrm{I}_{\mathrm{D} 25}$	85		nc
Q_{gd}		125		nc
$\mathrm{R}_{\text {thac }}$			0.18	/W
$\mathrm{R}_{\text {thcs }}$		0.05		/W

Safe Operating Area Specification

Symbol	Test Conditions	Min.	Typ.	Max.
SOA	$\mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.6 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$	240		W

Source-Drain Diode

Characteristic Values

Symbol	($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
	Test Conditions	Min.	Typ.	Max.	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			46	A
$\mathrm{I}_{\text {SM }}$	Repetitive; pulse width limited by $\mathrm{T}_{\text {JM }}$			100	A
$\mathrm{V}_{\text {sD }}$	$\begin{aligned} & I_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \text { Note } 1 \end{aligned}$			1.5	V
t_{rr}	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{S}},-\mathrm{dt} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$		600		ns

Note 1: Pulse test, $\mathrm{t}<300 \mu \mathrm{~s}$, duty cycle, $\mathrm{d} \leq 2 \%$

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from data gathered during objective characterizations of preliminary engineering lots; but
also may yet contain some information supplied during a pre-production design evaluation. IXYS
reserves the right to change limits, test conditions, and dimensions without notice.

SOT-227B (IXTN) Outline

(M4 screws (4x) supplied)

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.240	1.255	31.50	31.88
B	.307	.323	7.80	8.20
C	.161	.169	4.09	4.29
D	.161	.169	4.09	4.29
E	.161	.169	4.09	4.29
F	.587	.595	14.91	15.11
G	1.186	1.193	30.12	30.30
H	1.496	1.505	38.00	38.23
J	.460	.481	11.68	12.22
K	.351	.378	8.92	9.60
L	.030	.033	0.76	0.84
M	.496	.506	12.60	12.85
N	.990	1.001	25.15	25.42
O	.078	.084	1.98	2.13
P	.195	.235	4.95	5.97
Q	1.045	1.059	26.54	26.90
R	.155	.174	3.94	4.42
S	.186	.191	4.72	4.85
T	.968	.987	24.59	25.07
U	-.002	.004	-0.05	0.1

Fig. 1. Output Characteristics
@ $\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 3. Output Characteristics @ $\mathbf{1 2 5}^{\circ} \mathrm{C}$

Fig. 5. $\mathrm{R}_{\mathrm{DS}(\text { on) }}$ Normalized to $0.5 \mathrm{I}_{\mathrm{D} 25}$ Value vs. I_{D}

Fig. 2. Extended Output Characteristics
@ $\mathbf{2 5}^{\circ} \mathrm{C}$

Fig. 4. $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ Normalized to $0.5 \mathrm{I}_{\mathrm{D} 25}$ Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 9. Source Current vs.
Source-To-Drain Voltage

Fig. 11. Capacitance

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 12. Forw ard-Bias Safe
Operating Area @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

Fig. 13. Forward-Bias Safe
Operating Area @ $\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$

Fig. 14. Maximum Transient Thermal Impedance

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

