

Parameter	Ratings	Units
Blocking Voltage	100	V_P
Load Current	300	mA _{rms} / mA _{DC}
On-Resistance (max)	8	Ω

Features

- 3750V_{rms} Input/Output Isolation
- Low Drive Power Requirements (TTL/CMOS Compatible)
- · High Reliability
- · Arc-Free With No Snubbing Circuits
- FCC Compatible
- VDE Compatible
- No EMI/RFI Generation
- Small 8-Pin Package
- · Machine Insertable, Wave Solderable
- Surface Mount Tape & Reel Versions Available

Applications

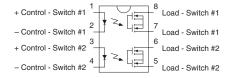
- Instrumentation
 - Multiplexers
 - Data Acquisition
 - Electronic Switching
 - I/O Subsystems
- · Meters (Watt-Hour, Water, Gas)
- · Medical Equipment-Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

Description

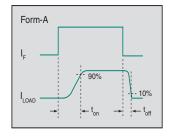
IXYS Integrated Circuits Division's LAA108 is a 100V, 300mA, 8Ω dual single-pole, normally open (1-Form-A) Solid State Relay that has two independently controlled, optically coupled outputs. The output MOSFET switches and photovoltaic die employ optically coupled MOSFET technology to provide 3750 $\rm V_{rms}$ of input-to-output isolation.

The relay outputs, that use patented OptoMOS architecture, are controlled by a highly efficient GaAIAS infrared LED.

This dual single-pole OptoMOS relay provides a more compact design solution than two discrete single-pole relays in a variety of applications, saving board space by incorporating both switches in a single 8-Pin package.


Approvals

- UL Certified Component: File E76270
- CSA Certified Component: Certificate 1175739
- EN/IEC 60950-1 Certified Component: TUV Certificate B 10 05 49410 006


Ordering Information

Part #	Description
LAA108	8-Pin DIP (50/Tube)
LAA108S	8-Pin Surface Mount (50/Tube)
LAA108STR	8-Pin Surface Mount (1,000/Reel)
LAA108P	8-Pin Flat Pack (50/Tube)
LAA108PTR	8-Pin Flat Pack (1,000/Reel)

Pin Configuration

Switching Characteristics of Normally Open (Form A) Devices

Absolute Maximum Ratings @ 25°C

Parameter	Ratings	Units
Blocking Voltage	100	V_P
Reverse Input Voltage	5	V
Input Control Current	50	mA
Peak (10ms)	1	Α
Input Power Dissipation ¹	150	mW
Total Power Dissipation ²	800	mW
Isolation Voltage, Input to Output	3750	V _{rms}
Operational Temperature	-40 to +85	°C
Storage Temperature	-40 to +125	°C

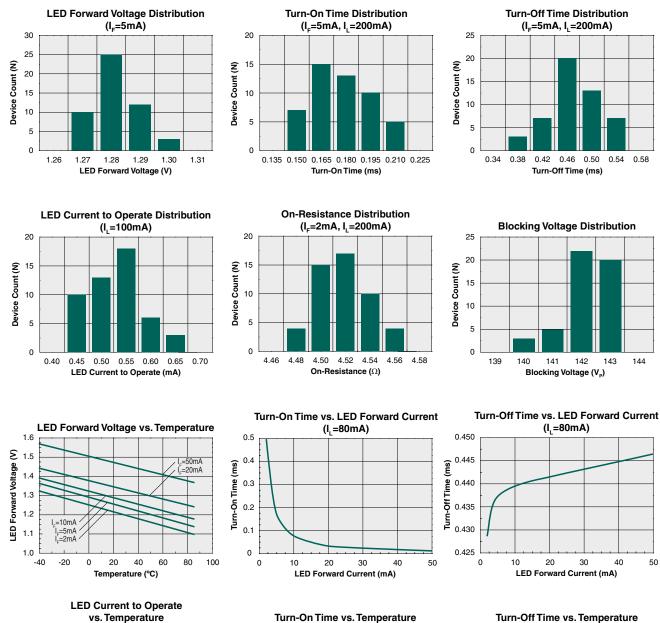
¹ Derate linearly 1.33 mW / °C

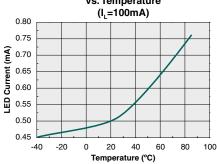
Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

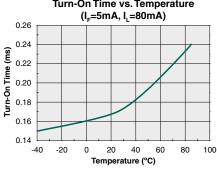
Electrical Characteristics @ 25°C (Unless Otherwise Noted)

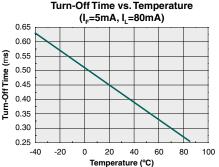
Parameter	Conditions	Symbol	Min	Тур	Max	Units
Output Characteristics						
Load Current						
Continuous 1	-	IL	-	-	300	$\mathrm{mA}_{\mathrm{rms}}$ / $\mathrm{mA}_{\mathrm{DC}}$
Peak	t =10ms	I _{LPK}	-	-	±400	mA _P
On-Resistance ²	I _L =300mA	R _{ON}	-	4.5	8	Ω
Off-State Leakage Current	$V_L = 100V_P$	I _{LEAK}	-	-	1	μΑ
Switching Speeds						
Turn-On	I -Em/ \/ -10\/	t _{on}	-	0.43	3	ms
Turn-Off	I _F =5mA, V _L =10V	t _{off}	-	0.17	3	1115
Output Capacitance	V _L =50V, f=1MHz	C _{OUT}	-	110	-	pF
Input Characteristics						
Input Control Current to Activate 3	I _L =300mA	I _F	-	0.5	2	mA
Input Control Current to Deactivate	-	-	0.2	0.3	-	mA
Input Voltage Drop	I _F =5mA	V_{F}	0.9	1.2	1.4	V
Reverse Input Current	V _R =5V	I _R	-	-	10	μΑ
Common Characteristics						
Input to Output Capacitance	-	C _{I/O}	-	3	-	pF

¹ If both poles operate simultaneously, the load current must be derated so as not to exceed the package total power dissipation value.

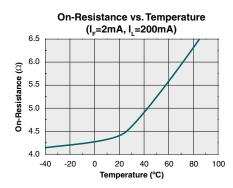

² Derate linearly 6.67 mW / °C

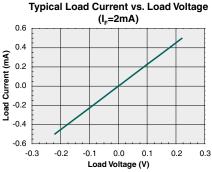

² Measurement taken within one (1) second of on-time.

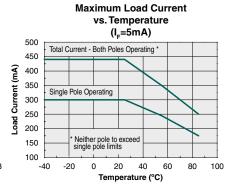

 $^{^3}$ For applications requiring high-temperature operation (T>60°C), a LED drive currrent of 4mA is recommended.

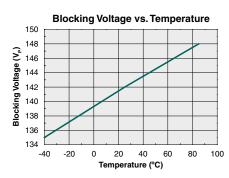


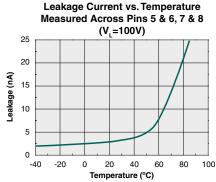
PERFORMANCE DATA@ 25°C (Unless Otherwise Noted)*

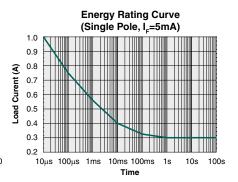





^{*}The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.




PERFORMANCE DATA@ 25°C (Unless Otherwise Noted)*



^{*}The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a **Moisture Sensitivity Level (MSL) rating** as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Rating
LAA108 / LAA108S / LAA108P	MSL 1

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

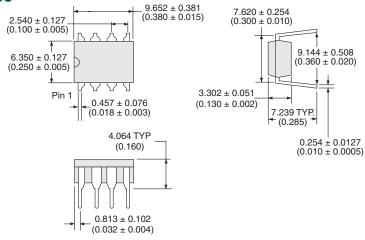
Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of **J-STD-020** must be observed.

Device	Maximum Temperature x Time	
LAA108 / LAA108S	250°C for 30 seconds	
LAA108P	260°C for 30 seconds	

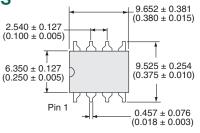
Board Wash

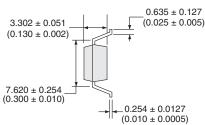
IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.

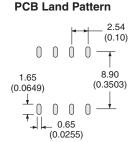


MECHANICAL DIMENSIONS

LAA108

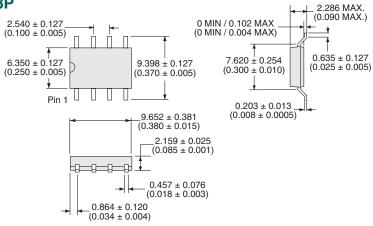


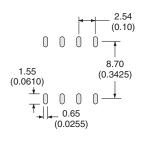

PCB Hole Pattern 8-0.800 DIA. (8-0.031 DIA.) 6.350 ± 0.127 (0.250 ± 0.005) 7.620 ± 0.127 (0.300 ± 0.005)


7.620 ± 0.127 (0.300 ± 0.005)

> Dimensions mm (inches)

LAA108S

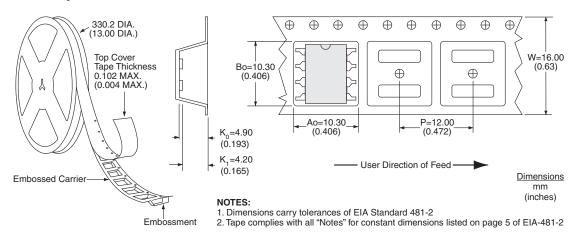




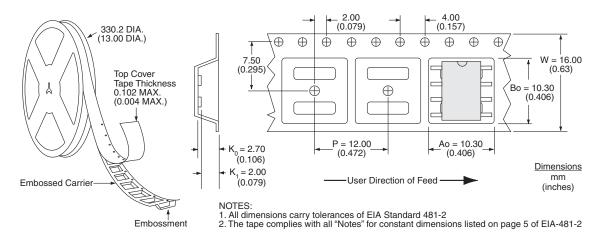
Dimensions mm (inches)

LAA108P

PCB Land Pattern



Dimensions mm (inches)



MECHANICAL DIMENSIONS

LAA108STR Tape & Reel

LAA108PTR Tape & Reel

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Solid State Relays - PCB Mount category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

M86F-2W M90F-2W G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST G3CN-202PL-3-US DC12 G3CN-203P DC3-28

G3RDX02SNUSDC12 PLA134S DMP6202A DS11-1005 AQ3A2-ZT432VDC AQV212J AQV214SD02 AQV252GAJ AQW414EA

AQY221N2SJ AQY221R2SJ EFR1200480A150 LCA220 LCB110S 1618400-5 SR75-1ST AQV112KLJ AQV212AJ AQV238AD01

AQV252GAXJ AQW414TS AQY210SXT AQY214SXT AQY221N2V1YJ AQY221R2VJ G2-1A02-ST G2-1A02-TT G2-1A03-ST G2-1A03-TT G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT G3M-203PL
UTU-1 DC24 CPC2330N 3-1617776-2 CTA2425 TS190