LAA127L 250V, 170mA Dual Single-Pole Current Limiting, Normally Open Relays

Parameter	Ratings	Units
Blocking Voltage, AC/DC	250	$\mathrm{~V}_{\mathrm{P}}$
Load Current	170	$\mathrm{~mA}_{\mathrm{rms}} / \mathrm{mA}_{\mathrm{DC}}$
On-Resistance (max)	10	Ω

Features

- Current Limiting Device
- $3750 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- Low Drive Power Requirements
- Higher Reliability than Electromechanical Relays
- No EMI/RFI Generation
- Small 8-Pin Package
- Flammability Rating UL 94 V-0
- Surface Mount Tape \& Reel Versions Available

Applications

- Telecommunications
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Security
- Industrial Controls

Description

LAA127L is a dual single-pole, normally open (1-Form-A) current-limiting Solid State Relay. The combination of super efficient MOSFET switches and photovoltaic die provides $3750 \mathrm{~V}_{\text {rms }}$ of input to output isolation.

The optically coupled outputs, which use the patented OptoMOS architecture, are controlled by a highly efficient infrared LED.

Dual single-pole OptoMOS relays provide a more compact design solution than two discrete single-pole relays in a variety of applications, and save board space by incorporating both switches in a single 8-pin package.

Approvals

- UL Recognized Component: File \# E76270
- CSA Certified Component: Certificate \# 1175739
- TUV EN 62368-1: Certificate \# B 0826670008

Ordering Information

Part \#	Description
LAA127L	8-Pin DIP (50/Tube)
LAA127LS	8-Pin Surface Mount (50/Tube)
LAA127LSTR	8-Pin Surface Mount (1,000/Reel)
LAA127PL	8-Pin SOIC (Flatpack) (50/Tube)
LAA127PLTR	8-Pin SOIC (Flatpack) (1,000/Reel)

Pin Configuration

Switching Characteristics of
Normally Open (Form A) Devices

Absolute Maximum Ratings @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Ratings	Units
Blocking Voltage	250	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current Peak (10ms)	50	mA
	1	A
Input Power Dissipation ${ }^{1}$	150	mW
Total Power Dissipation ${ }^{2}$	800	mW
Isolation Voltage, Input to Output	3750	$\mathrm{~V}_{\mathrm{rms}}$
Operational Temperature, Ambient	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

1 Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
${ }^{2}$ Derate output power linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at $+25^{\circ} \mathrm{C}$, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics						
Blocking Voltage	$\mathrm{I}_{\mathrm{L}}=1 \mu \mathrm{~A}$	$\mathrm{V}_{\text {DRM }}$	-	-	250	V_{P}
Load Current, Continuous	-	L	-	-	170	$\mathrm{mA}_{\text {rms }} / \mathrm{mA}_{\text {DC }}$
On-Resistance ${ }^{2}$	$\mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	13	15	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=250 \mathrm{~V}_{\mathrm{P}}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds Turn-On Turn-Off	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	-	-	5	ms
		$\mathrm{t}_{\text {off }}$	-	-	5	
Output Capacitance	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	110	-	pF
Load Current Limiting	-	I_{CL}	190	235	280	mA
Input Characteristics						
Input Control Current to Activate	$\mathrm{L}_{\mathrm{L}}=170 \mathrm{~mA}$	$I_{\text {F }}$	-	-	5	mA
Input Control Current to Deactivate	-	-	0.4	0.7	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.36	1.5	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$I_{\text {R }}$	-	-	10	$\mu \mathrm{A}$
Common Characteristics						
Input to Output Capacitance	$\mathrm{V}_{10}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{10}	-	3	-	pF

${ }^{1}$ If both poles operate, the load current must be derated so as not to exceed the package power dissipation value.
2 Measurement taken within one (1) second of on-time.

PERFORMANCE DATA*

Typical Blocking Voltage Distribution

Typical Turn-On Time vs. LED Forward Current $\left(\mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

Typical Turn-Off Time $\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}\right.$)

Typical On-Resistance Distribution
$\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

五

PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at $25^{\circ} \mathrm{C}$.

Manufacturing Information

Moisture Sensitivity
All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Classification
LAA127LS	MSL 1
LAA127PL	MSL 3

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Soldering Profile

Provided in the table below is the IPC/JEDEC J-STD-020 Classification Temperature $\left(T_{C}\right)$ and the maximum total dwell time (t_{p}) in all reflow processes that the body temperature of these surface mount devices may be ($\left.\mathrm{T}_{\mathrm{C}}-5\right)^{\circ} \mathrm{C}$ or greater. The device's body temperature must not exceed the Classification Temperature at any time during reflow soldering processes.

Device	Classification Temperature $\left(T_{c}\right)$	Dwell Time (t_{p})	Max Reflow Cycles
LAA127LS	$250^{\circ} \mathrm{C}$	30 seconds	3
LAA127PL	$245^{\circ} \mathrm{C}$	30 seconds	3

For through-hole devices, the maximum pin temperature and maximum dwell time through all solder waves is provided in the table below. Dwell time is the interval beginning when the pins are initially immersed into the solder wave until they exit the solder wave. For multiple waves, the dwell time is from entering the first wave until exiting the last wave. During this time, pin temperatures must not exceed the maximum temperature given in the table below. Body temperature of the device must not exceed the limit shown in the table below at any time during the soldering process.

Device	Maximum Pin Temperature	Maximum Body Temperature	Maximum Dwell Time	Wave Cycles
LAA127L	$260^{\circ} \mathrm{C}$	$250^{\circ} \mathrm{C}$	10 seconds ${ }^{*}$	1

*Total cumulative duration of all waves.

Board Wash

IXYS Integrated Circuits recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to halide flux or solvents.

ROHS

MECHANICAL DIMENSIONS

LAA127L

PCB Hole Pattern

Dimensions

 mm (inches)
LAA127LS

PCB Land Pattern

$\frac{\text { Dimensions }}{\mathrm{mm}}$ (inches)

LAA127PL

PCB Land Pattern

Dimensions
mm
(inches)

MECHANICAL DIMENSIONS

LAA127LSTR Tape \& Reel

NOTES:

1. Dimensions carry tolerances of EIA Standard 481-2
2. Tape complies with all "Notes" for constant dimensions listed on page 5 of EIA-481-2 3. Controlling dimension: mm

LAA127PLTR Tape \& Reel

For additional information please visit our website at: https://www.ixysic.com

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.
Read complete Disclaimer Notice at https://www.littelfuse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQH3213J AQV212J AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV212SXJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S LBB110S LCA110LSTR LCB126S WPPM-0626D WPPM-3526D

