Parameter	Ratings	Units
Blocking Voltage	250	$\mathrm{~V}_{\mathrm{P}}$
Load Current	170	$\mathrm{~mA}_{\mathrm{rss}} / \mathrm{mA}_{\mathrm{DC}}$
On-Resistance (\max)	20	Ω

Features

- Current Limited
- 3750V ${ }_{\text {rms }}$ Input/Output Isolation
- Low Drive Power Requirements (TTL/CMOS Compatible)
- High Reliability
- Arc-Free With No Snubbing Circuits
- FCC Compatible
- VDE Compatible
- No EMI/RFI Generation
- Small 8-Pin Package
- Machine Insertable, Wave Solderable
- Surface Mount, Tape \& Reel Version Available

Applications

- Telecommunications
- Telecom Switching
- Tip/Ring Circuits
- Modem Switching (Laptop, Notebook, Pocket Size)
- Hook Switch
- Dial Pulsing
- Ground Start
- Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

Description

LBA120L comprises two independent 250V, 170mA, 20Ω solid state relays: one single-pole, normally open (1-Form-A) current limited relay and one single-pole, normally closed (1-Form-B) relay.

LBA120L is designed to provide an ideal solution where a complementary Form-A/Form-B relay pair is required.

Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate 1175739
- EN/IEC 60950-1 Certified Component TUV Certificate B 090749410004

Ordering Information

Part \#	Description
LBA120L	8-Pin DIP (50/Tube)
LBA120LS	8-Pin Surface Mount (50/Tube)
LBA120LSTR	8-Pin Surface Mount (1,000/Reel)

Pin Configuration

Switching Characteristics of Normally Open Devices

Switching Characteristics of Normally Closed Devices

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Ratings	Units
Blocking Voltage	250	$\mathrm{~V}_{\mathrm{P}}$
Reverse Input Voltage	5	V
Input Control Current		
Peak (10ms)	50	mA
Input Power Dissipation 1	1	A
Total Power Dissipation ${ }^{2}$	150	mW
Isolation Voltage, Input to Output	800	mW
Operational Temperature	3750	$\mathrm{~V}_{\text {rms }}$
Storage Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
${ }^{2}$ Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Tур	Max	Units
Output Characteristics						
Load Current Continuous ${ }^{1}$	-	I_{L}	-	-	150	$m A_{\text {rms }} / \mathrm{mA}_{\text {DC }}$
Load Current Limiting (1-Form-A Only)	-	I_{CL}	± 190	± 235	± 280	mA
On-Resistance	$\mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	21	25	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=250 \mathrm{~V}_{\mathrm{P}}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds Turn-On Turn-Off	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$t_{\text {on }}$ $t_{\text {off }}$	$-$	-	5	ms
Output Capacitance	$\mathrm{V}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	50	-	pF
Input Characteristics						
Input Control Current to Activate	$\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	$I_{\text {F }}$	-	-	5	mA
Input Control Current to Deactivate	-	$I_{\text {F }}$	0.4	0.7	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$I_{\text {R }}$	-	-	10	$\mu \mathrm{A}$
Common Characteristics						
Input to Output Capacitance	-	$\mathrm{C}_{1 /}$	-	3	-	pF

[^0]Form-A/Form-B PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Form-A RELAY PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Form-A PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Form-A
Typical I_{F} for Switch Dropout vs. Temperature

Form-A
Typical On-Resistance vs. Temperature

Form-A
Typical Blocking Voltage vs. Temperature

Form-A
Typical Turn-Off Time vs. LED Forward Current

Form-A
Typical Turn-On Time
vs. Temperature

Form-A
Typical Load Current vs. Load Voltage

Form-A
Typical Leakage vs. Temperature (Measured across Pins 5\&6)

Form-A
Typical I_{F} for Switch Operation vs. Temperature
$\left(\mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{Dc}}\right)$

Form-A
Typical Turn-Off Time vs. Temperature

Form-A

Typical Current Limiting vs. Temperature ($\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$)

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Form-B PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Form-B
Typical Turn-On Time $\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

Form-B
Typical I_{F} for Switch Operation $\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

Form-B
Typical Turn-On Time vs. LED Forward Current $\left(\mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

Form-B
Typical I_{F} for Switch Dropout vs. Temperature

Form-B
Typical Turn-Off Time $\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

Form-B
Typical I_{E} for Switch Dropout $\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

Form-B
Typical Turn-Off Time vs. LED Forward Current $\left(I_{L}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

Form-B
Typical Turn-On Time vs. Temperature
$\left(I_{F}=5 m A, I_{L}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

Form-B
Typical On-Resistance Distribution ($\mathrm{N}=50, \mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}$)

Form-B
Typical Blocking Voltage Distribution ($\mathrm{N}=50$)

Form-B
Typical I_{F} for Switch Operation vs. Temperature
$\left(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}_{\mathrm{DC}}\right)$

Form-B
Typical Turn-Off Time vs. Temperature

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Form-B PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Form-B

Form-B

Form-B
Typical Load Current vs. Load Voltage

Form-B
Typical Leakage vs. Temperature Measured across Pins 7\&8

Form-B
Maximum Load Current vs. Temperature

Manufacturing Information

Moisture Sensitivity

1
All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Rating
LBA120L / LBA120LS	MSL 1

ESD Sensitivity

$\underset{A B}{A}$
This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

Device	Maximum Temperature xTime
LBA120L/LBA120LS	$250^{\circ} \mathrm{C}$ for 30 seconds

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.

Integrated Circuits Division

MECHANICAL DIMENSIONS

LBA120L

LBA120LS

PCB Land Pattern

$$
\frac{\text { Dimensions }}{m m}
$$

LBA120LSTR Tape \& Reel

For additional information please visit our website at: www.ixysic.com
IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
M86F-2W M90F-2W G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST G3CN-202PL-3-US DC12 G3CN-203P DC3-28 G3RDX02SNUSDC12 PLA134S DMP6202A DS11-1005 AQ3A2-ZT432VDC AQV212J AQV214SD02 AQV252GAJ AQW414EA AQY221N2SJ AQY221R2SJ EFR1200480A150 LCA220 LCB110S 1618400-5 SR75-1ST AQV112KLJ AQV212AJ AQV238AD01 AQV252GAXJ AQW414TS AQY210SXT AQY214SXT AQY221N2V1YJ AQY221R2VJ G2-1A02-ST G2-1A02-TT G2-1A03-ST G2-1A03-TT G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT G3M-203PL-UTU-1 DC24 CPC2330N 3-1617776-2 CTA2425 TS190

[^0]: ${ }^{1}$ If both poles operate the load current must be derated so as not to exceed the package power dissipation value.

