Parameter	Rating	Units
Load Voltage	60	V
Load Current	1	$\mathrm{~A}_{\text {rms }} / \mathrm{A}_{\mathrm{DC}}$
On-Resistance (max)	0.4	Ω

Features

- $3750 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- Low Drive Power Requirements (TTL/CMOS Compatible)
- Arc-Free With No Snubbing Circuits
- No EMI/RFI Generation
- Small 8-Pin Package
- Machine Insertable, Wave Solderable
- Surface Mount Version
- Tape \& Reel available

Applications

- Telecommunications
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Utility Meters (gas, oil, electric and water)
- Medical Equipment-Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

Pin Configuration

Description

LBA716 is a $60 \mathrm{~V}, 1 \mathrm{~A}, 0.4 \Omega$ dual Solid State Relay integrating independent normally open (1-Form-A) and normally closed (1-Form-B) relays into a single package. It features a superior combination of low on-resistance and enhanced peak load current (5A max.) handling capability.

Approvals

- UL Recognized Component: File \# E76270
- CSA Certified Component: Certificate \# 1175739
- EN/IEC 60950-1 Certified Component TUV Certificate B 090749410004

Ordering Information

Part \#	Description
LBA716	8-Pin DIP (50/Tube)
LBA716S	8-Pin Surface Mount (50/Tube)
LBA716STR	8-Pin Surface Mount (1000/Reel)

Switching Characteristics of Normally Open Devices

Switching Characteristics of Normally Closed Devices

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Ratings	Units
Blocking Voltage	60	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current	50	mA
Peak (10ms)	1	A
Input Power Dissipation ${ }^{1}$	150	mW
Total Power Dissipation ${ }^{2}$	800	mW
Isolation Voltage, Input to Output	3750	$\mathrm{~V}_{\text {rms }}$
Operational Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
2 Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Characteristics: Form-A (Normally Open)						
Load Current						
Continuous	-	I_{L}	-	-	1	$A_{\text {rms }} / A_{D C}$
Peak	$t \leq 10 \mathrm{~ms}$	LLPK	-	-	± 5	A_{P}
On-Resistance	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$	$\mathrm{R}_{\text {ON }}$	-	0.21	0.4	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=60 \mathrm{~V}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Output Capacitance	$50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	105	-	pF
Switching Speeds						
Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	-	0.7	5	ms
Turn-Off		$\mathrm{t}_{\text {off }}$	-	0.09	5	
Input Control Current to Activate	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$	$\mathrm{I}_{\text {F }}$	-	-	2	mA
Input Control Current to Deactivate	-	I_{F}	0.1	-	-	mA
Characteristics: Form-B (Normally Closed)						
Load Current						
Continuous	-	I_{L}	-	-	0.5	$A_{\text {rms }} / A_{\text {DC }}$
Peak	$t \leq 10 \mathrm{~ms}$	$\mathrm{I}_{\text {LPK }}$	-	-	± 1.2	A_{P}
On-Resistance	$\mathrm{I}_{\mathrm{L}}=0.5 \mathrm{~A}$	$\mathrm{R}_{\text {ON }}$	-	1.63	2	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Output Capacitance	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, 50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	280	-	pF
Switching Speeds						
Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	-	0.58	5	ms
Turn-Off		$\mathrm{t}_{\text {off }}$	-	0.76	5	
Input Control Current to Activate	-	$\mathrm{I}_{\text {F }}$	-	-	2	mA
Input Control Current to Deactivate	$\mathrm{I}_{\mathrm{L}}=0.5 \mathrm{~A}$	I_{F}	0.1	-	-	mA
Common Characteristics: Form-A and Form-B						
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {R }}$	-	-	10	$\mu \mathrm{A}$
Capacitance, Input to Output	-	C_{10}	-	3	-	pF

[^0]
Form-A RELAY PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Form-A
Typical LED Forward Voltage Drop ($\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$)

Form-A
Typical $I_{\text {F }}$ for Switch Operation
($\mathrm{N}=50, \mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}$)

Form-A
Typical I_{F} for Switch Operation vs. Temperature

Form-A
Typical Turn-On Time vs. Temperature $\left(\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\right)$

Form-A
Typical Turn-On Time

Form-A
Typical On-Resistance
($\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$)

Form-A
Typical Turn-On Time vs. LED Forward Current ($\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$)

Form-A
Typical Turn-Off Time vs. Temperature ($\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$)

Form-A
Typical Turn-Off Time ($\mathrm{N}=50, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$)

Form-A
Typical Blocking Voltage
($\mathrm{N}=50$)

Form-A
Typical Turn-Off Time vs. LED Forward Current ($\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$)

Form-A
Typical On-Resistance (AC)
vs. Temperature
($\mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$)

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Form-A RELAY PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Form-A
Typical Leakage vs. Temperature
Measured Across Pins 5 \& 6

Form-A

Form-B RELAY PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Form-B RELAY PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted)*

Form-B
Typical Turn-On Time vs. Temperature ($\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$)

Form-B
Typical Load Voltage vs. Load Current

Form-B
Typical Turn-On Time vs. LED Forward Current

Form-B
Typical Turn-Off Time vs. Temperature ($\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$)

Form-B
Maximum Load Current vs. Temperature ($\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$)

Form-B Typical Turn-Off Time vs. LED Forward Current ($\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$)

Form-B
Typical On-Resistance vs. Temperature $\left(\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}\right)$

Form-B
Typical Blocking Voltage
vs. Temperature
$\left(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\right)$

Form-B
Typical Leakage vs.Temperature

Measured Across Pins 7\&8
$\left(\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=60 \mathrm{~V}\right)$

Form-B

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Manufacturing Information

Moisture Sensitivity

1
All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Rating
LBA716 / LBA716S	MSL 1

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

Device	Maximum Temperature x Time
LBA716 / LBA716S	$250^{\circ} \mathrm{C}$ for 30 seconds

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.

Mechanical Dimensions

LBA716

LBA716S

PCB Land Pattern

LBA716STR Tape \& Reel

1. Dimensions carry tolerances of EIA Standard 481-2
2. Tape complies with all "Notes" for constant dimensions listed on page 5 of EIA-481-2

For additional information please visit our website at: www.ixysic.com
IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQH3213J AQV212J AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV212SXJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S LBB110S LCA110LSTR LCB126S WPPM-0626D WPPM-3526D

[^0]: *NOTE: If both poles operate simultaneously, then load current must be derated so as not to exceed the package power dissipation value.

