Thyristor Module

$\mathrm{V}_{\text {RRM }}$	$=2 \times 1200 \mathrm{~V}$
$\mathrm{I}_{\text {TAV }}$	$=181 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{T}}$	$=1.03 \mathrm{~V}$

Phase leg

Part number

MCC162-12io1

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying $50 / 60 \mathrm{~Hz}$
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: Y4

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Thyristo					ating			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
$\mathrm{V}_{\text {RSMIDSM }}$	max. non-repetitive reverse/forward blocking voltage		$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			1300	V	
$V_{\text {RRMDRM }}$	max. repetitive reverse/forward blocking voltage		$\mathrm{T}_{\mathrm{v} j}=25^{\circ} \mathrm{C}$			1200	V	
$\mathrm{I}_{\mathrm{R} D}$	reverse current, drain current	$\begin{aligned} & V_{R / D}=1200 \mathrm{~V} \\ & V_{R / D}=1200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} \nu}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} 300 \\ 10 \end{array}$	$\mu \mathrm{A}$ mA	
$\mathrm{V}_{\text {T }}$	forward voltage drop	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=150 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{T}}=300 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.09 \\ & 1.25 \end{aligned}$	V	
		$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=150 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{T}}=300 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} j}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1.03 \\ & 1.25 \end{aligned}$	V	
$\mathrm{I}_{\text {tav }}$	average forward current	$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}$			181	A	
$\mathrm{I}_{\text {T(RMS) }}$		180° sine				300	A	
			$\mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}$			0.88	V	
$\mathrm{r}_{\text {T }}$						$\mathrm{m} \Omega$		
$\mathrm{R}_{\text {thuc }}$	thermal resistance junction to case						0.155	K/W
$\mathbf{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.07		K/W	
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$			645	W	
$\mathrm{I}_{\text {TSM }}$	max. forward surge current	$\mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine }$	$\mathrm{T}_{\mathrm{v},}=45^{\circ} \mathrm{C}$			6.00	kA	
		$\mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz})$, sine					kA	
		$\mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz})$, sine	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=125^{\circ} \mathrm{C}$			5.10	kA	
		$\mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz})$, sine	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$			5.51	kA	
12t	value for fusing	$\mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz})$, sine	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=45^{\circ} \mathrm{C}$			180.0	$\mathrm{kA}^{2} \mathrm{~s}$	
		$\mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz})$, sine	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$			174.7	$\mathrm{kA}^{2} \mathrm{~s}$	
		$\mathrm{t}=10 \mathrm{~ms}$; $(50 \mathrm{~Hz})$, sine	$\mathrm{T}_{\mathrm{v} \text { }}=125^{\circ} \mathrm{C}$			130.1	$\mathrm{kA}^{2} \mathrm{~s}$	
		$\mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz})$, sine	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$			126.3	$\mathrm{kA}^{2} \mathrm{~s}$	
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		273		pF	
P_{GM}	max. gate power dissipation	$\mathrm{t}_{\mathrm{p}}=30 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			120	W	
		$\mathrm{t}_{\mathrm{p}}=500 \mu \mathrm{~s}$				60	W	
$\mathrm{P}_{\mathrm{GAV}}$	average gate power dissipation					8	W	
(di/dt) ${ }_{\text {cr }}$	critical rate of rise of current	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=125^{\circ} \mathrm{C} ; \mathrm{f}=50 \mathrm{~Hz} \quad \text { repetitive, } \mathrm{I}_{\mathrm{T}}=540 \mathrm{~A} \\ & \mathrm{t}_{\mathrm{P}}=200 \mu \mathrm{~s} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.5 \mathrm{~A} / \mu \mathrm{s} ; \text { } \\ & \mathrm{I}_{\mathrm{G}}=0.5 \mathrm{~A} ; \mathrm{V}=2 / 3 \mathrm{~V}_{\text {DRM }} \quad \text { non-repet., } \mathrm{I}_{\mathrm{T}}=180 \mathrm{~A} \end{aligned}$				150	A/ $\mu \mathrm{s}$	
						500	A/ $/ \mathrm{s}$	
$\overline{(d v / d t)}{ }_{\text {cr }}$	critical rate of rise of voltage	$\begin{aligned} & \mathrm{V}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{R}_{\mathrm{GK}}=\infty ; \text { method } 1 \text { (linear voltage rise) } \end{aligned}$				1000	$\mathrm{V} / \mu \mathrm{s}$	
$\mathrm{V}_{\text {GT }}$	gate trigger voltage	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			2.5	V	
			$\mathrm{T}_{\mathrm{v},}=-40^{\circ} \mathrm{C}$			2.6	V	
$I_{\text {GT }}$	gate trigger current	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			150	mA	
			$\mathrm{T}_{\mathrm{v},}=-40^{\circ} \mathrm{C}$			200	mA	
$\overline{\mathrm{V} \text { GD }}$	gate non-trigger voltage	$V_{D}=2 / 3 V_{\text {DRM }}$	$\mathrm{T}_{\mathrm{v} J}=125^{\circ} \mathrm{C}$			0.2	V	
I_{GD}	gate non-trigger current					10	mA	
I_{L}	latching current	$\mathrm{t}_{\mathrm{p}}=30 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			300	mA	
		$\mathrm{I}_{\mathrm{G}}=0.5 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0$.						
I_{H}	holding current	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} \quad \mathrm{R}_{\mathrm{GK}}=\infty$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			200	mA	
t_{gd}	gate controlled delay time	$V_{D}=1 / 2 V_{\text {DRM }}$	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			2	$\mu \mathrm{s}$	
		$\mathrm{I}_{\mathrm{G}}=0.5 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0$						
$\mathbf{t a}_{\text {a }}$	turn-off time	$\begin{aligned} & V_{R}=100 \mathrm{~V} ; \mathrm{I}_{\mathrm{T}}=300 \mathrm{~A} ; \mathrm{V}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \mathrm{~T}_{\mathrm{VJ}}=100^{\circ} \mathrm{C} \\ & \mathrm{di} / \mathrm{dt}=10 \mathrm{~A} / \mu \mathrm{s} \mathrm{dv} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s} \mathrm{t}_{\mathrm{p}}=200 \mu \mathrm{~s} \end{aligned}$			150		$\mu \mathrm{s}$	

Package	Y4			Ratings			
Symbol	Definition Conditions			min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMS }}$	RMS current per terminal					300	A
Tvs	virtual junction temperature			-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature			-40		100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature			-40		125	${ }^{\circ} \mathrm{C}$
Weight					150		g
$\begin{aligned} & \mathbf{M}_{\mathrm{D}} \\ & \mathbf{M}_{\mathrm{T}} \end{aligned}$	mounting torque terminal torque			$\begin{array}{r} 2.25 \\ 4.5 \end{array}$		$\begin{array}{r} 2.75 \\ 5.5 \end{array}$	Nm Nm
$\mathbf{d}_{\text {Spp/App }}$ $\mathbf{d}_{\text {spb/Apb }}$	creepage distance on surface / striking distance through air	terminal to terminal terminal to backside	$\begin{aligned} & 14.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 16.0 \end{aligned}$			$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$
$\mathrm{V}_{\text {ISOL }}$	isolation voltage $\begin{aligned} & \text { t }=1 \text { second } \\ & \\ & t=1 \text { minute }\end{aligned}$	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$; lisol $\leq 1 \mathrm{~mA}$		$\begin{aligned} & 3600 \\ & 3000 \end{aligned}$			V V

Data Matrix: part no. (1-19), DC + PI (20-25), lot.no.\# (26-31), blank (32), serial no.\# (33-36)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCC162-12io1	MCC162-12io1	Box	6	429597

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C}$

Thyristor
$\underset{\mathbf{V}_{\text {max }}}{ }$ threshold voltage 0.88 V
$\mathbf{R}_{0 \max }$ slope resistance * $0.8 \quad \mathrm{~m} \Omega$

Outlines Y4

Optional accessories for modules
Keyed gate/cathode twin plugs with wire length $=350 \mathrm{~mm}$, gate $=$ white, cathode $=$ red $\left.\begin{array}{l}\text { Type ZY 180L (} L=\text { Left for pin pair 4/5) } \\ \text { Type ZY 180R (} R=\text { Right for pin pair } 6 / 7 \text {) }\end{array}\right\}$ UL 758, style 3751

C-C (1:1)

Thyristor

Fig. 1 Surge overload current $\mathrm{I}_{\text {TSM }}$, $\mathrm{I}_{\mathrm{FSM}}$: Crest value, t: duration

Fig. $2 I^{2} t$ versus time ($1-10 \mathrm{~ms}$)

Fig. 4 Power dissipation vs. on-state current \& ambient temperature (per thyristor or diode)

Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 3 Max. forward current at case temperature

Fig. 5 Gate trigger characteristics

Fig. 7 Gate trigger delay time

Thyristor

Fig. 8 Three phase AC-controller: Power dissipation versus RMS output current and ambient temperature

$\mathrm{R}_{\mathrm{th} \mathrm{C}}$ for various conduction angles d :

d	$\mathrm{R}_{\text {thJc }}[\mathrm{K} / \mathrm{W}]$
DC	0.155
180°	0.167
120°	0.176
60°	0.197
30°	0.227

Constants for $Z_{\text {thJc }}$ calculation:

i	$\mathrm{R}_{\text {thi }}[K / W]$	$\mathrm{t}_{\mathrm{i}}[\mathrm{s}]$
1	0.0072	0.001
2	0.0188	0.080
3	0.1290	0.200

Fig. 9 Transient thermal impedance junction to case (per thyristor/diode)

$\mathrm{R}_{\mathrm{th} \mathrm{Jk}}$ for various conduction angles d :

d	$\mathrm{R}_{\text {thJK }}[\mathrm{K} / \mathrm{W}]$
DC	0.225
180°	0.237
120°	0.246
60°	0.267
30°	0.297

Constants for $Z_{\text {thJK }}$ calculation:

i	$\mathrm{R}_{\text {thi }}[\mathrm{K} / \mathrm{W}]$	$\mathrm{t}_{\mathrm{i}}[\mathrm{s}]$
1	0.0072	0.001
2	0.0188	0.080
3	0.1290	0.200
4	0.0700	1.000

Fig. 10 Transient thermal impedance junction to heatsink (per thyristor/diode)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

