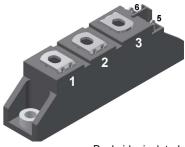


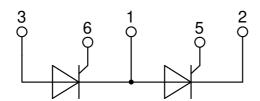
Thyristor Module

 $V_{RRM} = 2x 1400 V$


 $I_{TAV} = 18A$

 $V_T = 1.57 V$

Phase leg


Part number

MCC19-14io8B

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

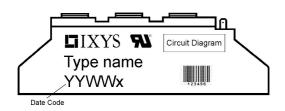
- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

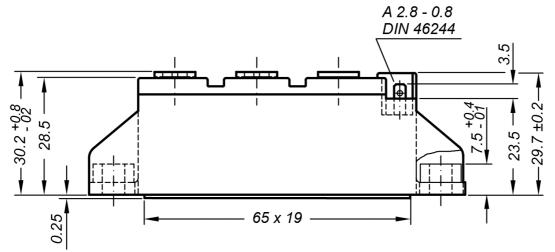
Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

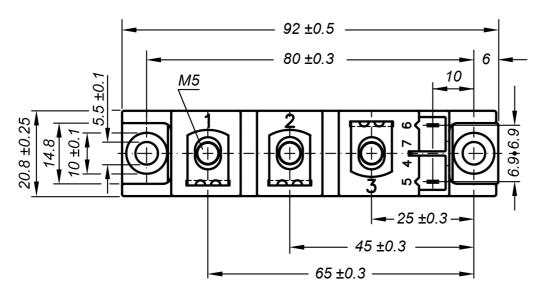


Thyristo		a			Ratings		1
Symbol	Definition	Conditions	T 0500	min.	typ.	max.	Un
V _{RSM/DSM}	max. non-repetitive reverse/forwa		$T_{VJ} = 25^{\circ}C$			1500	
V _{RRM/DRM}	max. repetitive reverse/forward blo		$T_{VJ} = 25^{\circ}C$			1400	'
R/D	reverse current, drain current	$V_{R/D} = 1400 \text{ V}$	$T_{VJ} = 25^{\circ}C$			100	μ
		$V_{R/D} = 1400 \text{ V}$	$T_{VJ} = 125^{\circ}C$			3	m
V _T	forward voltage drop	$I_T = 40 \text{ A}$	$T_{VJ} = 25^{\circ}C$			1.56	,
		I _T = 80 A				2.05	'
		$I_T = 40 \text{ A}$	$T_{VJ} = 125$ °C			1.57	,
		$I_{T} = 80 \text{ A}$				2.29	,
I _{TAV}	average forward current	$T_C = 85^{\circ}C$	T _{vJ} = 125°C			18	1
I _{T(RMS)}	RMS forward current	180° sine				28	
V _{T0}	threshold voltage		T _{vJ} = 125°C			0.85	,
r _T	slope resistance } for power lo	ss calculation only				18	m۵
R _{thJC}	thermal resistance junction to case	9				1.3	K/V
R _{thCH}	thermal resistance case to heatsir	nk			0.2		K/V
P _{tot}	total power dissipation		T _C = 25°C			77	٧
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{V,I} = 45^{\circ}C$			400	,
- 1 SW	<u> </u>	t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			430	
		t = 10 ms; (50 Hz), sine	T _{v.i} = 125°C			340	,
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			365	,
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			800	A ²
	value for rushing	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			770	A ²
		t = 0.5 ms; (50 Hz), sine	$T_{VJ} = 125^{\circ}C$			580	A ²
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			555	A ²
<u> </u>	junction capacitance	$V_{\rm B} = 400 \text{V} \text{f} = 1 \text{MHz}$	$V_R = 0 V$ $T_{VJ} = 25^{\circ}C$		22	333	pl
C _J			$T_{VJ} = 25 \text{ C}$ $T_{C} = 125 \text{ °C}$		22	10	V
P_{GM}	max. gate power dissipation	$t_{P} = 30 \mu s$	1 _C = 125 C				į
_		$t_{P} = 300 \mu s$				5	۷
P _{GAV}	average gate power dissipation					0.5	۷
(di/dt) _{cr}	critical rate of rise of current	$T_{VJ} = 125 ^{\circ}\text{C}; f = 50 \text{Hz}$	•			150	A/μ
		$t_P = 200 \mu s; di_G/dt = 0.45 A/\mu s; -$					
			on-repet., $I_T = 18 A$				A/µ
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 125$ °C			1000	V/µ
		R _{GK} = ∞; method 1 (linear volta					
V_{GT}	gate trigger voltage	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			1.5	'
			$T_{VJ} = -40$ °C			1.6	١
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			100	m
			$T_{VJ} = -40$ °C			200	m/
$V_{\sf GD}$	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 125^{\circ}C$			0.2	١
I _{GD}	gate non-trigger current					5	m
I _L	latching current	t _p = 10 μs	T _{VJ} = 25°C			450	m/
		$I_{\rm G} = 0.45 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.45 \text{A}/\mu \text{s}$	5				-
I _H	holding current	$V_D = 6 \text{ V } R_{GK} = \infty$	T _{vJ} = 25°C			200	m
t _{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$	$T_{VJ} = 25$ °C			2	μ
gu	- ,· ·	$I_{\rm G} = 0.45 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.45 \text{A}/\mu \text{s}$	•			_	μ.
+	turn-off time	$V_R = 100 \text{ V}; I_T = 20\text{A}; V = \frac{3}{2}$			150		- 11
tq	to on timo	$\mathbf{v}_{R} - 100 \mathbf{v}, \mathbf{I}_{T} = 20 \mathbf{A}, \mathbf{V} = \mathbf{A}$	J PDRM IVJ = IUU U		130		μ

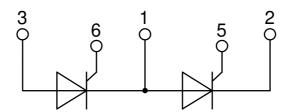
Package	TO-240AA				F	Ratings	S	
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature	е			-40		125	°C
T _{op}	operation temperature				-40		100	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
$\mathbf{M}_{_{T}}$	terminal torque				2.5		4	Nm
d _{Spp/App}	oroonaga diatanaa an surf	and Latriking diatance through air	terminal to terminal	13.0	9.7			mm
$d_{Spb/Apb}$	orcepage distance on surface pariming distance this		terminal to backside 16		16.0			mm
V _{ISOL}	isolation voltage	t = 1 second			4800			٧
1002	t = 1 min		50/60 Hz, RMS; lisoL ≤ 1 mA		4000			٧


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCC19-14io8B	MCC19-14io8B	Box	36	457817

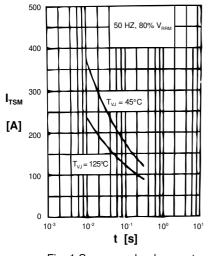
Similar Part	Package	Voltage class
MCMA25P1600TA	TO-240AA-1B	1600
MCMA35P1600TA	TO-240AA-1B	1600

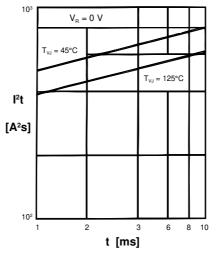

Equiva	lent Circuits for	Simulation	* on die level	$T_{VJ} = 125^{\circ}C$
$I \rightarrow V_0$)—[R _o]-	Thyristor		
V _{0 max}	threshold voltage	0.85		V
$R_{0 max}$	slope resistance *	16.8		$m\Omega$

Outlines TO-240AA


General tolerance: DIN ISO 2768 class "c"

Optional accessories for modules


Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red


Type ZY 200L (L = Left for pin pair 4/5) Type ZY 200R (R = Right for pin pair 6/7) UL 758, style 3751

Thyristor

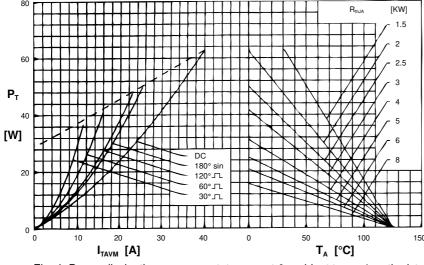



Fig. 1 Surge overload current I_{TSM} : Crest value, t: duration

Fig. 2 I^2t versus time (1-10 ms)

Fig. 3 Max. forward current at case temperature

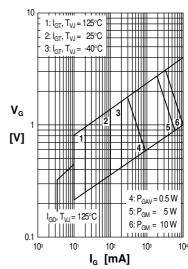
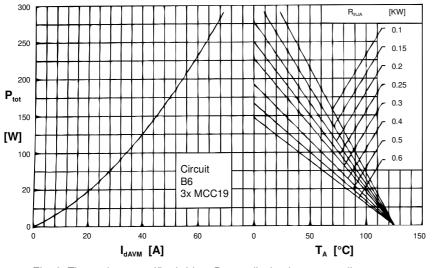



Fig. 4 Power dissipation versus onstate current & ambient temp. (per thyristor)

Fig. 5 Gate trigger charact.

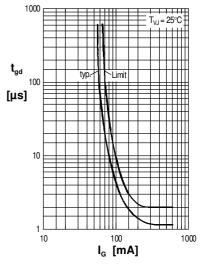


Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 7 Gate trigger delay time

Thyristor

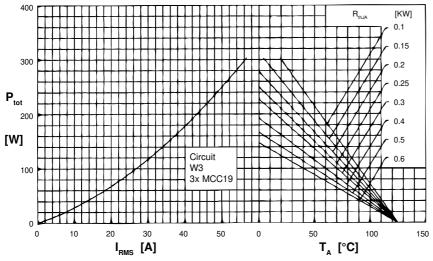


Fig. 8 Three phase AC-controller: Power dissipation vs. RMS output current and ambient temperature

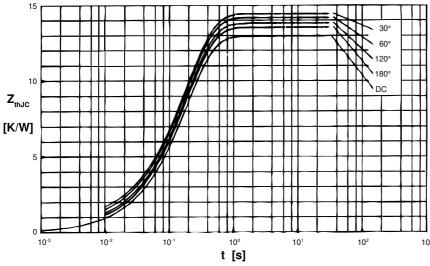


Fig. 9 Transient thermal impedance junction to case (per thyristor)

 R_{thJC} for various conduction angles d:

IIJO		
	d	R_{thJC} [K/W]
	DC	1.30
1	180°	1.35
1	120°	1.39
	60°	1.42
	30°	1.45

Constants for Z_{thJC} calculation:

i	R _{thi} [K/W]	t _, [s]
1	0.018	0.0033
2	0.041	0.0216
3	1.241	0.1910

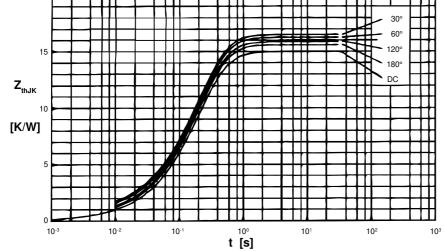


Fig. 10 Transient thermal impedance junction to heatsink (per thyristor)

 \boldsymbol{R}_{thJK} for various conduction angles d:

d	R _{thJK} [K/V
DC	1.50
180°	1.55
120°	1.59
60°	1.62
30°	1.65

Constants for Z_{thJK} calculation:

i	R _{thi} [K/W]	t, [s]
1	0.018	0.0033
2	0.041	0.0216
3	1.241	0.1910
4	0.200	0.4600

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747and per semiconductor unless otherwise specified

20

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

<u>M252511FV</u> <u>DD2</u>	60N12K-A	DD380N16A	DD89N1600K-	\underline{A} $\underline{APT2X21D0}$	C60J <u>APT58M</u>	80J B522F-2-Y	YEC MSTC90-1	<u>16</u> <u>25.163.0653.1</u>
25.163.2453.0 25.3	163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
25.330.4753.1 25.3	330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	<u>T485F</u> <u>T485H</u>
T512F-YEB T513	F T514F T	554 <u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
25.332.4353.1 25.3	350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0								