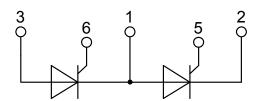


Thyristor Module

= 2x 800 V21A V_{T} 1.32 V

Phase leg


Part number

MCC21-08io8B

Backside: isolated

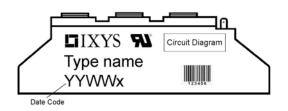
Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

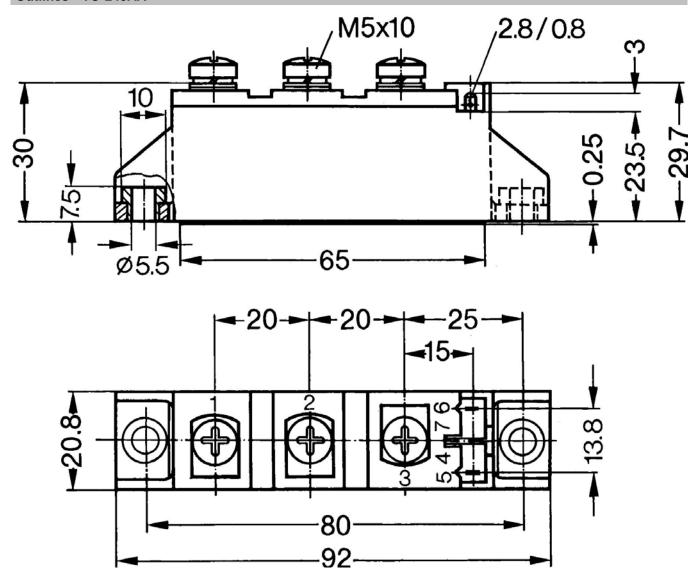
- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

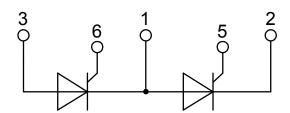
Package: TO-240AA


- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramicReduced weight
- · Advanced power cycling

Thyristo					Ratings		
Symbol	Definition	Conditions		min.	typ.	max.	Ur
V _{RSM/DSM}	max. non-repetitive reverse/forwar	d blocking voltage	$T_{VJ} = 25^{\circ}C$			900	! !
V _{RRM/DRM}	max. repetitive reverse/forward blo	<u> </u>	$T_{VJ} = 25^{\circ}C$			800	i
R/D	reverse current, drain current	$V_{R/D} = 800 V$	$T_{VJ} = 25^{\circ}C$			100	μ
		$V_{R/D} = 800 \text{ V}$	$T_{VJ} = 125^{\circ}C$			5	m
V _T	forward voltage drop	$I_T = 45 A$	$T_{VJ} = 25^{\circ}C$			1.31	
		$I_T = 90 A$				1.64	i ! !
		$I_T = 45 A$	$T_{VJ} = 125^{\circ}C$			1.32	
		$I_{T} = 90 A$				1.74	1
I _{TAV}	average forward current	$T_c = 85^{\circ}C$	$T_{VJ} = 125^{\circ}C$			21	1
T(RMS)	RMS forward current	180° sine				33	
V _{TO}	threshold voltage		T _{vJ} = 125°C			0.85	! !
r _T	slope resistance } for power lo	ss calculation only				15	m
R _{thJC}	thermal resistance junction to case	9				1.1	K/\
R _{thCH}	thermal resistance case to heatsin	k			0.20		K/
P _{tot}	total power dissipation		T _C = 25°C			90	١
TSM	max. forward surge current	t = 10 ms; (50 Hz), sine	T _{v.i} = 45°C			320	! ! !
TOW	-	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			345	! ! !
		t = 10 ms; (50 Hz), sine	T _{v.i} = 125°C			270	1
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			295	! ! ! !
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			510	Α
	raide is raemig	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			495	A
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 125^{\circ}C$			365	A
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			360	A ²
C _J	junction capacitance	$V_R = 400 \text{ V} \text{ f} = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		22	300	р
P _{GM}		$t_{\rm P}$ = 30 µs	$T_{\rm C} = 125^{\circ}{\rm C}$		22	10	-
ГС	max. gate power dissipation		1 _C = 125 C				į
_		t _P = 300 μs				5	\
P _{GAV}	average gate power dissipation	T 40500 (5011				0.5	١
(di/dt) _{cr}	critical rate of rise of current		epetitive, $I_T = 45 A$			150	Α/ŀ
		$t_P = 200 \mu\text{s}; di_G/dt = 0.45 A/\mu\text{s}; -$					
			on-repet., $I_T = 21 A$			500	<u> </u>
(dv/dt) _{cr}	critical rate of rise of voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 125$ °C			1000	V/۲
		R _{GK} = ∞; method 1 (linear voltage					: ! !
V_{GT}	gate trigger voltage	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			1	
			$T_{VJ} = -40^{\circ}C$			1.2	; ! ! !
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			65	m
			$T_{VJ} = -40^{\circ}C$			80	m
$V_{\sf GD}$	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 125$ °C			0.2	! ! !
l _{GD}	gate non-trigger current					5	m
I _L	latching current	t _p = 10 μs	$T_{VJ} = 25^{\circ}C$			150	m
		$I_{G} = 0.3 A; di_{G}/dt = 0.3 A/\mu s$	3				
I _H	holding current	V _D = 6 V R _{GK} = ∞	T _{VJ} = 25°C			100	m
gd	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$	T _{VJ} = 25°C			2	ı
<u> </u>		$I_{\rm G} = 0.3 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.3 \text{A/µs}$					
t _q	turn-off time	$V_R = 100 \text{ V}; I_T = 15 \text{ A}; V_D = \frac{2}{3}$			150		-
-4		$di/dt = 10 \text{ A/}\mu\text{s}; dv/dt = 20 \text{ V}.$. 00		

Package TO-240AA				Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{stg}	storage temperature				-40		125	°C
T _{VJ}	virtual junction temperature				-40		125	°C
Weight						90		g
M _D	mounting torque				2.5		4	Nm
M_{T}	terminal torque				2.5		4	Nm
d _{Spp/App}	creepage distance on surface striking distance through		terminal to terminal	13.0	9.7			mm
d Spb/Apb	creepage distance on sun	ace Surking distance unough an	terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second			3600			V
	t = 1 minute		50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		3000			V


Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCC21-08io8B	MCC21-08io8B	Box	6	


Similar Part	Package	Voltage class
MCMA25P1200TA	TO-240AA-1B	1200
MCMA35P1200TA	TO-240AA-1B	1200

Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 125 ^{\circ}C$
$I \rightarrow V_0$	R_0	Thyristor		
V _{0 max}	threshold voltage	0.85		V
R _{0 max}	slope resistance *	13.8		$m\Omega$

Outlines TO-240AA

Thyristor

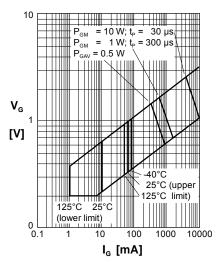


Fig. 1 Gate trigger characteristics

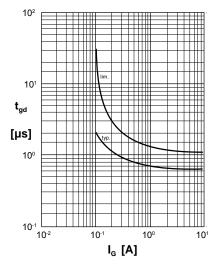


Fig. 2 Gate trigger delay time

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCR Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

DT430N22KOF T1401N42TOH T1851N60TOH T390N14TOF T420N12TOF T470N16TOF T640N16TOF T901N36TOF TD140N18KOF

TD142N16KOF TD162N16KOF-A TD250N12KOF TD330N16AOF TT215N22KOF TZ310N20KOF TZ425N12KOF TZ500N12KOF

T300N14TOF T3710N06TOF VT T390N16TOF T420N16TOF T460N24TOF T501N70TOH T560N16TOF T640N14TOF TD250N14KOF

TT600N16KOF TZ500N16KOF TZ240N36KOF TT210N12KOF NTE5710 TD180N16KOF TT240N28KOF TZ425N14KOF

T1081N60TOH TT61N08KOF TD251N18KOF TT162N08KOF TZ430N22KOF TT180N12KOF T2001N34TOF TD140N22KOF

MDMA200P1600SA TT180N16KOF VS-ST333C08LFM0 VS-ST180C14C0L T1080N02TOF TD320N16SOF T360N22TOF

TZ810N22KOF