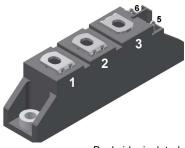


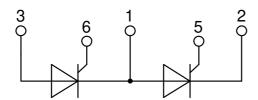
Thyristor Module

 $V_{RRM} = 2x 1400 V$


 $I_{TAV} = 21 A$

 $V_T = 1.52 V$

Phase leg


Part number

MCC21-14io8B

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

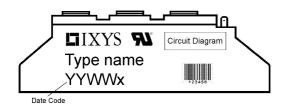
Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

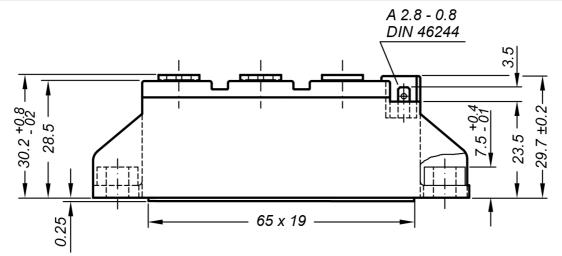
- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

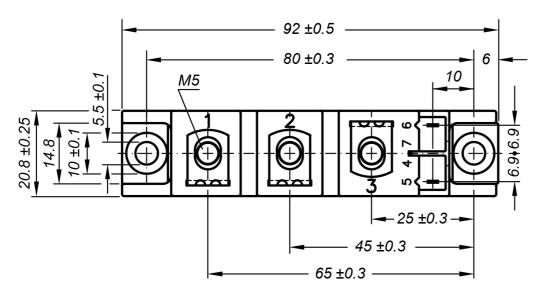

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Thyristo	r				Ratings	5	ı
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM/DSM}	max. non-repetitive reverse/forwa	ard blocking voltage	$T_{VJ} = 25^{\circ}C$			1500	V
V _{RRM/DRM}	max. repetitive reverse/forward b	<u> </u>	$T_{VJ} = 25^{\circ}C$			1400	V
I _{R/D}	reverse current, drain current	$V_{R/D} = 1400 \text{ V}$	$T_{VJ} = 25^{\circ}C$			100	μΑ
		$V_{R/D} = 1400 \text{ V}$	$T_{VJ} = 125^{\circ}C$			5	mA
V_{T}	forward voltage drop	$I_T = 45 A$	$T_{VJ} = 25^{\circ}C$			1.45	٧
		I _T = 90 A				1.89	V
		$I_{T} = 45 A$	$T_{VJ} = 125$ °C			1.52	٧
-		I _T = 90 A				2.20	V
I _{TAV}	average forward current	$T_c = 85^{\circ}C$	$T_{VJ} = 125$ °C			21	Α
I _{T(RMS)}	RMS forward current	180° sine				33	Α
V_{T0}	threshold voltage	oss calculation only	$T_{VJ} = 125$ °C			0.85	V
r _T	slope resistance	oss calculation only				15	mΩ
R _{thJC}	thermal resistance junction to cas	se				1.1	K/W
R_{thCH}	thermal resistance case to heatsi	ink			0.2		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			90	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			320	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			345	Α
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 125$ °C			270	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			295	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			510	A²s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			495	A²s
		t = 10 ms; (50 Hz), sine	T _{VJ} = 125°C			365	A²s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			360	A²s
C _J	junction capacitance	$V_R = 400 V$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		22		pF
P _{GM}	max. gate power dissipation	t _P = 30 μs	T _C = 125°C			10	W
		t _P = 300 μs				5	W
P_{GAV}	average gate power dissipation					0.5	W
(di/dt) _{cr}	critical rate of rise of current	$T_{VJ} = 125 ^{\circ}\text{C}; f = 50 \text{Hz}$	epetitive, $I_T = 45 A$			150	A/μs
		$t_P = 200 \mu s; di_G/dt = 0.45 A/\mu s;$	•				1
		· · · · · ·	on-repet., $I_{T} = 21 \text{ A}$			500	A/μs
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	T _{v.i} = 125°C			1000	V/µs
, ,,,,		R _{GK} = ∞; method 1 (linear volta	age rise)				•
V _{GT}	gate trigger voltage	V _D = 6 V	T _{V.I} = 25°C			1	٧
ui			$T_{VJ} = -40$ °C			1.2	٧
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			65	mA
-01	5 55	-6	$T_{VJ} = -40$ °C			80	mA
V _{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DBM}$	$T_{VJ} = 125^{\circ}C$			0.2	V
I _{GD}	gate non-trigger current	TD / C TORM	. 73			5	mA
	latching current	t _p = 10 μs	T _{VJ} = 25°C			150	mA
I _L	.a.o.mg oanon	$I_p = 10 \mu s$ $I_G = 0.3 A; di_G / dt = 0.3 A / \mu s$				130	
	holding current	$V_{D} = 6 \text{ V } R_{GK} = \infty$	$T_{VJ} = 25$ °C			100	mA
I _H		=	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 25^{\circ}C$				1
t _{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$				2	μs
	turn off time	$I_{\rm G} = 0.3 \text{A}; di_{\rm G}/dt = 0.3 \text{A}/\mu s$			450		i !
tq	turn-off time	$V_R = 100 \text{ V}; I_T = 15\text{A}; V = \frac{2}{3}$			150		μs
		$di/dt = 10 A/\mu s dv/dt = 20 V$	$t/\mu s t_p = 300 \mu s$				i !

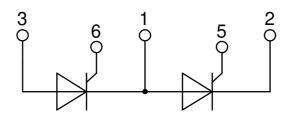
Package TO-240AA					Ratings			
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature				-40		125	°C
T _{op}	operation temperature				-40		100	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
$\mathbf{M}_{_{T}}$	terminal torque				2.5		4	Nm
d _{Spp/App}	araanaga diatanaa an aurfaa	e striking distance through air	terminal to terminal	13.0	9.7			mm
$d_{Spb/Apb}$	creepage distance on surfac	e striking distance through an	terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 II 5140 I		4800			٧
		t = 1 minute	50/60 Hz, RMS; IISOL ≤ 1 mA		4000			٧


Ord	dering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Sta	andard	MCC21-14io8B	MCC21-14io8B	Box	36	469785

Similar Part	Package	Voltage class
MCMA25P1600TA	TO-240AA-1B	1600
MCMA35P1600TA	TO-240AA-1B	1600


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 125^{\circ}C$
$I \rightarrow V_0$)—[R ₀]-	Thyristor		
V _{0 max}	threshold voltage	0.85		V
$R_{0 \text{ max}}$	slope resistance *	13.8		$m\Omega$

Outlines TO-240AA


General tolerance: DIN ISO 2768 class "c"

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red

Type ZY 200L (L = Left for pin pair 4/5) Type ZY 200R (R = Right for pin pair 6/7) UL 758, style 3751

Thyristor

Fig. 1 Gate trigger characteristics

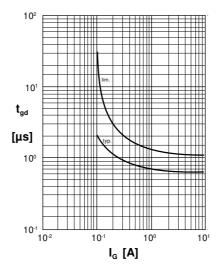


Fig. 2 Gate trigger delay time

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

M252511FV DD260N12K-A DD380N16A DD89N1600K-A APT2X21DC60J APT58M80J B522F-2-YEC MSTC90-16 ND104N16K 25.163.0653.1 25.163.2453.0 25.163.4253.0 25.190.2053.0 25.194.3453.0 25.320.4853.1 25.320.5253.1 25.326.3253.1 25.326.3553.1 25.330.1653.1 25.330.4753.1 25.330.5253.1 25.334.3253.1 25.334.3353.1 25.350.2053.0 25.352.4753.1 25.522.3253.0 T483C T484C T485F T485H T512F-YEB T513F T514F T554 T612FSE 25.161.3453.0 25.179.2253.0 25.194.3253.0 25.352.1253.1 25.326.4253.1 25.330.0953.1 25.332.4353.1 25.350.1653.0 25.350.2453.0 25.352.1453.0 25.352.1453.0 25.352.2453.0 25.352.5453.1 25.522.3353.0 25.602.4053.0