MCC225-12io1
$\mathrm{V}_{\text {RRM }}=2 \times 1200 \mathrm{~V}$
$\mathrm{I}_{\text {TAV }}=220 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{T}}=1.18 \mathrm{~V}$

Phase leg

Part number

MCC225-12io1

Features / Advantages:

- International standard package
- Direct copper bonded Al2O3-ceramic with copper base plate
- Planar passivated chip
- Keyed gate/cathode twin pins

Applications:

- Motor control, softstarter
- Power converter
- Heat and temperature control for industrial furnaces and chemical processes
- Lighting control
- Solid state switches

Package: Y1

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Package	Y1		Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMS }}$	RMS current per terminal				600	A
T v	virtual junction temperature		-40		140	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		125	${ }^{\circ} \mathrm{C}$
Weight				680		g
$\begin{aligned} & \mathbf{M}_{\mathrm{D}} \\ & \mathbf{M}_{\mathbf{T}} \end{aligned}$	mounting torque terminal torque		$\begin{array}{r} 4.5 \\ 11 \end{array}$		7 13	Nm Nm
$\mathbf{d}_{\text {spp/App }}$ $\mathbf{d}_{\text {Spb/Apb }}$	creepage distance on surface / striking distance through air	terminal to terminal terminal to backside	$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$			$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$
$\mathrm{V}_{\text {ISoL }}$	isolation voltage $\quad \begin{aligned} & t=1 \text { second } \\ & t=1 \text { minute }\end{aligned}$	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$; lisol $\leq 1 \mathrm{~mA}$	$\begin{aligned} & 3600 \\ & 3000 \end{aligned}$			V V

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCC225-12io1	MCC225-12io1	Box	3	463280

Equivalent Circuits for Simulation \quad *on die level $\quad T_{v J}=140^{\circ} \mathrm{C}$

Thyristor
$\mathrm{V}_{0 \text { max }}$ threshold voltage 0.79 V

Optional accessories for modules
Keyed gate/cathode twin plugs with wire length $=350 \mathrm{~mm}$, gate $=$ white, cathode $=$ red Type ZY 180L (L = Left for pin pair 4/5)
Type ZY 180R ($\mathrm{R}=$ = Right for pin pair 6/7) $\}$
UL 758, style 3751

Thyristor

Fig. 1 Surge overload current
$\mathrm{I}_{\text {TSMFSM }}$: Crest value, t : duration

Fig. $\left.2\right|^{2}$ dt versus time

Fig. 4 Power dissipation versus on-state current and ambient temperature (per thyristor or diode)

Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 3 Max. forward current at case temperature

Fig. 5 Gate voltage and current

$I_{G}[A]$
Fig. 7 Gate trigger characteristics

Rectifier

Fig. 8 Three phase AC-controller: Power dissipation versus $\mathrm{R}_{\text {MS }}$ output current and ambient temperature

t [s]

V_{T} [V]
Fig. 9 Forward characteristics
$\mathrm{R}_{\mathrm{trcc}}$ for various conduct. angles d :

d	$\mathrm{R}_{\text {wha }}(\mathrm{K} / \mathrm{W})$
DC	0.157
180°	0.168
120°	0.177
60°	0.200
30°	0.243

Constants for $Z_{\text {tuc }}$ calculation:

i	$\mathrm{R}_{\text {ti }}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}(\mathrm{s})$
1	0.0076	0.00054
2	0.0406	0.09800
3	0.0944	0.54000
4	0.0147	12.0000

10^{2}

Fig. 10 Transient thermal impedance junction to case (per thyristor/diode)

Fig. 11 Transient thermal impedance junction to heatsink (per thyristor/diode)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

