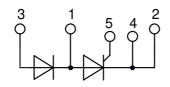

Thyristor \ Diode Module

V_{RRM}	<i>=</i> 2x 1200 V				
I _{tav}	=	25 A			
VT	=	1.2 V			

Phase leg

Part number


MCMA25PD1200TB

Backside: isolated

20191205d

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

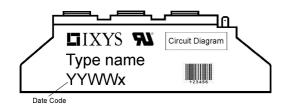
Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.


Rectifier		• •••			Ratings		
Symbol	Definition	Conditions		min.	typ.	max.	Uni
V _{RSM/DSM}	max. non-repetitive reverse/forwa	rd blocking voltage	$T_{VJ} = 25^{\circ}C$			1300	١
V _{RRM/DRM}	max. repetitive reverse/forward bl		$T_{VJ} = 25^{\circ}C$			1200	١
R/D	reverse current, drain current	V _{R/D} = 1200 V	$T_{vJ} = 25^{\circ}C$			100	μ/
		V _{R/D} = 1200 V	$T_{VJ} = 140^{\circ}C$			4	m/
V _T	forward voltage drop	I _τ = 25 A	$T_{vJ} = 25^{\circ}C$			1.22	١
		$I_{T} = 50 \text{ A}$				1.47	١
		I _τ = 25 A	T _{vJ} = 125°C			1.20	١
		I _τ = 50 A				1.52	١
ITAV	average forward current	$T_c = 85^{\circ}C$	T _{vJ} = 140°C			25	ļ
I _{T(RMS)}	RMS forward current	180° sine				40	ļ
V _{T0}	threshold voltage		T _{v.i} = 140°C			0.87	١
r _T	slope resistance { for power lo	ss calculation only	٧J			13	mΩ
R _{thJC}	thermal resistance junction to cas	۵				1.2	K/W
	thermal resistance case to heatsir				0.2		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$		0.2	90	Ŵ
	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{v_1} = 45^{\circ}C$			400	4
I _{TSM}	max. Iorward surge current	t = 8,3 ms; (60 Hz), sine	$V_{\rm R} = 0 V$			430	,
							ļ
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 140 ^{\circ}C$			340	
10.		t = 8,3 ms; (60 Hz), sine	$V_{\rm R} = 0 V$			365	4
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			800	A ²
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			770	A ²
		t = 10 ms; (50 Hz), sine	$T_{vJ} = 140^{\circ}C$			580	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			555	A ² s
C	junction capacitance	$V_R = 400 V$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		16		pſ
P _{GM}	max. gate power dissipation	t _P = 30 μs	$T_c = 140 \circ C$			10	N
		t _P = 300 μs				5	N
P _{GAV}	average gate power dissipation					0.5	W
(di/dt) _{cr}	critical rate of rise of current	$T_{v_J} = 125 ^{\circ}C; f = 50 Hz$ re	epetitive, $I_{T} = 75 A$			150	A/μ
		t_{P} = 200 µs; di_G/dt = 0.45 A/µs; -					
		$I_{G} = 0.45 \text{ A}; \text{ V} = \frac{2}{3} \text{ V}_{DRM}$ no	on-repet., $I_{\tau} = 25 \text{ A}$			500	A/μ
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DBM}$	T _{vJ} = 125°C			1000	V/µs
		$R_{GK} = \infty$; method 1 (linear voltage	ge rise)				
V _{gt}	gate trigger voltage	$V_{\rm p} = 6 \text{ V}$	$T_{VJ} = 25^{\circ}C$			1.5	١
u.		5	$T_{vJ} = -40 ^{\circ}\text{C}$			1.6	١
I _{GT}	gate trigger current	$V_{\rm D} = 6 \text{ V}$	$T_{VJ} = 25^{\circ}C$			55	mÆ
G	<u>gane migger een en </u>		$T_{\rm VJ} = -40^{\circ}\rm C$			80	m/
V _{gd}	gate non-trigger voltage	$V_{\rm D} = \frac{2}{3} V_{\rm DBM}$	$T_{VJ} = 140^{\circ}C$			0.2	۱۱۱
	gate non-trigger current	VD - 73 VDRM	101 - 140 0			5	m/
		t 10	ТОГОС				
I.	latching current	t _p = 10 μs I _G = 0.45 A; di _G /dt = 0.45 A/μs	$T_{vJ} = 25 ^{\circ}C$			150	mA
I _H	holding current	$V_{\rm D} = 6 V R_{\rm GK} = \infty$	$T_{VJ} = 25 ^{\circ}C$			100	mA
t _{gd}	gate controlled delay time	$V_{\rm D} = \frac{1}{2} V_{\rm DBM}$	$T_{VJ} = 25 ^{\circ}\text{C}$			2	μ
- yu		$I_{\rm G} = 0.45 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.45 \text{A}/\mu\text{s}$				_	. P**
+	turn-off time	$V_{\rm B} = 100 \text{ V}; \ I_{\rm T} = 25\text{A}; \ V = \frac{2}{2}$			150		
ta		$v_{\rm R} = 100 v, i_{\rm T} = 20 \pi, v = 73$	JRM VJ - ZJ U		150		μ

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

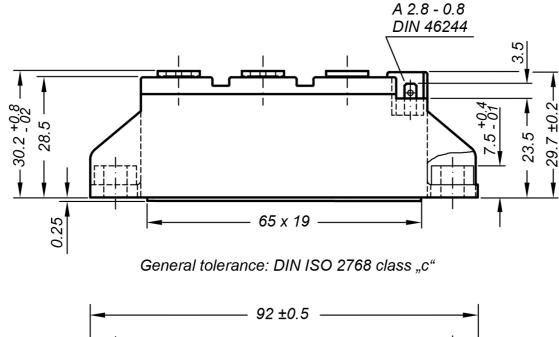
20191205d

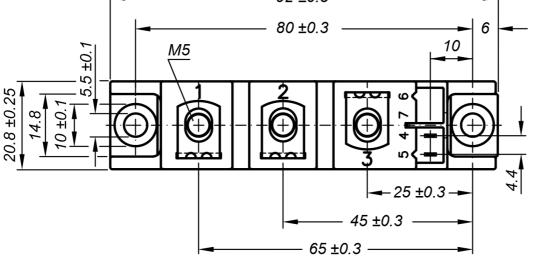
Package	Package TO-240AA				Ratings			
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					60	Α
T _{vj}	virtual junction temperature				-40		140	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
M _T	terminal torque		2.5		4	Nm		
d _{Spp/App}	creepage distance on surface striking distance through a		terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}	creepage distance on surface / surf	ang uistance through an	terminal to backside	16.0	16.0			mm
V	isolation voltage	t = 1 second			4800			V
	t = 1 minute		50/60 Hz, RMS; liso∟ ≤ 1 mA		4000			V

Part description

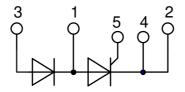
M = Module C = Thyristor (SCR) M = Thyristor A = (up to 1800V) 25 = Current Rating [A] PD = Phase leg 1200 = Reverse Voltage [V] TB = TO-240AA-1B

[Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
	Standard	MCMA25PD1200TB	MCMA25PD1200TB	Box	36	515983


Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 140^{\circ}C$
	- Ro-	Thyristor		
V _{0 max}	threshold voltage	0.87		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	11.8		mΩ


IXYS reserves the right to change limits, conditions and dimensions.

20191205d


Outlines TO-240AA

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red Type ZY 200L (L = Left for pin pair 4/5) UL 758, style 3751

20191205d

Thyristor

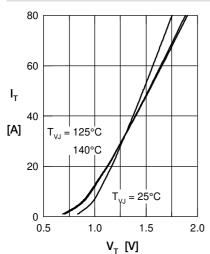


Fig. 1 Forward characteristics

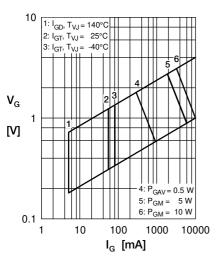


Fig. 4 Gate voltage & gate current

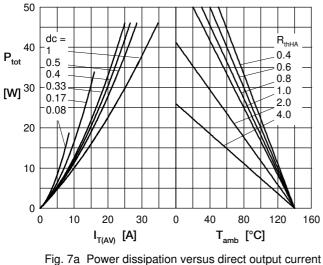
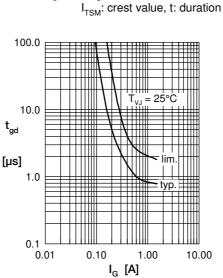



Fig. 7b and ambient temperature

50 Hz, 80% V

400

300

200

100

 $T_{VJ} = 140^{\circ}C$

0.1

t [s]

Fig. 2 Surge overload current

0.01

ITSM

[A]

Fig. 5 Gate controlled delay time t_{ad}

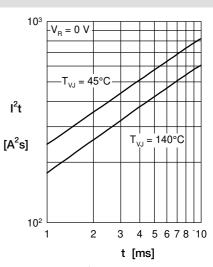
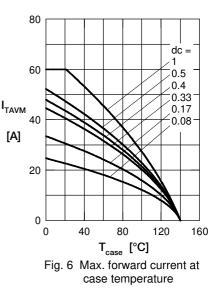
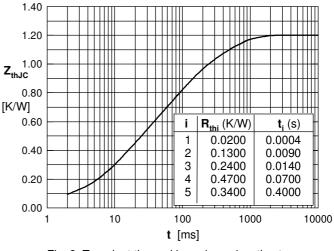




Fig. 3 I²t versus time (1-10 s)

20191205d

IXYS reserves the right to change limits, conditions and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCR Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

DT430N22KOF T1401N42TOH T1851N60TOH T390N14TOF T420N12TOF T470N16TOF T640N16TOF T901N36TOF TD140N18KOF TD142N16KOF TD162N16KOF-A TD250N12KOF TD330N16AOF TT215N22KOF TZ310N20KOF TZ425N12KOF TZ500N12KOF T300N14TOF T3710N06TOF VT T390N16TOF T420N16TOF T460N24TOF T501N70TOH T560N16TOF T640N14TOF TD250N14KOF TT600N16KOF TZ500N16KOF TZ240N36KOF TT210N12KOF NTE5710 TD180N16KOF TT240N28KOF TZ425N14KOF T1081N60TOH TT61N08KOF TD251N18KOF TT162N08KOF TZ430N22KOF TT180N12KOF T2001N34TOF TD140N22KOF MDMA200P1600SA TT180N16KOF VS-ST333C08LFM0 VS-ST180C14C0L T1080N02TOF TD320N16SOF T360N22TOF TZ810N22KOF