

Thyristor Module

MCMA65P1600TA

V_{RRM}	<i>=</i> 2x 1600 V			
I _{tav}	=	65 A		
Vτ	=	1.17 V		

Phase leg

Part number

MCMA65P1600TA

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

MCMA65P1600TA

Thyristo					Ratings		!
Symbol	Definition	Conditions		min.	typ.	max.	Un
V _{RSM/DSM}	max. non-repetitive reverse/forward	blocking voltage	$T_{vJ} = 25^{\circ}C$			1700	1
V _{RRM/DRM}	max. repetitive reverse/forward bloc		$T_{vJ} = 25^{\circ}C$			1600	١
R/D	reverse current, drain current	V _{R/D} = 1600 V	$T_{vJ} = 25^{\circ}C$			100	μ/
		$V_{R/D} = 1600 V$ $T_{VJ} = 140^{\circ}C$		10	m/		
V _T	forward voltage drop	$I_{T} = 65 A$	$T_{VJ} = 25^{\circ}C$			1.20	١
		I _T = 130 A				1.45	١
		I _T = 65 A	T _{vJ} = 125°C			1.17	١
		I _T = 130 A				1.48	١
I _{tav}	average forward current	T _c = 85°C	T _{vJ} = 140°C			65	1
I _{T(RMS)}	RMS forward current	180° sine				105	ļ
V _{T0}	threshold voltage		T _{v.i} = 140°C			0.85	١
r _T	slope resistance } for power los	s calculation only				4.8	m۵
R _{thJC}	thermal resistance junction to case					0.5	K/W
R _{thCH}	thermal resistance case to heatsink				0.2		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$		-	230	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{y_1} = 45^{\circ}C$			1.15	k/
•TSM		t = 8,3 ms; (60 Hz), sine	$V_{\rm N} = 0 V$			1.24	k/
		t = 0,0 ms; (50 Hz), sine t = 10 ms; (50 Hz), sine	$T_{VJ} = 140^{\circ}C$			980	4
		t = 8,3 ms; (60 Hz), sine	$V_{\rm NJ} = 140$ C $V_{\rm R} = 0$ V			1.06	k/
l²t	value for fusing	t = 0.3 ms; (50 Hz), sine t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$				ļ
1-1	value for fusing					6.62	1
		t = 8,3 ms; (60 Hz), sine	$V_{\rm R} = 0 V$			6.40	-
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 140 ^{\circ}\text{C}$			4.80	kA ²
_		t = 8,3 ms; (60 Hz), sine	$V_{\rm R} = 0 V$		- 4	4.63	¦
CJ	junction capacitance	$V_{R} = 400 V f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		54		pl
P _{GM}	max. gate power dissipation	t _P = 30 μs	$T_c = 140 ^{\circ}C$			10	W
		t _P = 300 μs				5	W
P _{GAV}	average gate power dissipation					0.5	N
(di/dt) _{cr}	critical rate of rise of current	$T_{v_J} = 140 ^{\circ}C; f = 50 Hz$ r	repetitive, $I_T = 195 A$			150	A/μ
		t_{P} = 200 µs; di _G /dt = 0.45 A/µs;					
		$I_{G} = 0.45 \text{ A}; V = \frac{2}{3} V_{DRM}$ r	non-repet., $I_{T} = 65 A$			500	A/μ
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{vJ} = 140^{\circ}C$			1000	V/μ
		$R_{GK} = \infty$; method 1 (linear volta	age rise)				
V _{gt}	gate trigger voltage	$V_{D} = 6 V$	$T_{VJ} = 25^{\circ}C$			1.5	١
			$T_{vJ} = -40 ^{\circ}C$			1.6	١
I _{GT}	gate trigger current	$V_{D} = 6 V$	$T_{VJ} = 25^{\circ}C$			95	m/
		2	$T_{VJ} = -40$ °C			200	m/
V _{gd}	gate non-trigger voltage	$V_{\rm D} = \frac{2}{3} V_{\rm DBM}$	$T_{VJ} = 140^{\circ}C$			0.2	
I _{GD}	gate non-trigger current		V3			10	i.
	latching current	t _p = 10 μs	$T_{VJ} = 25 ^{\circ}C$			200	m/
•L		$l_{g} = 0.45 \text{ A}; \text{ di}_{g}/\text{dt} = 0.45 \text{ A}/\mu$				200	
	holding ourrant	$V_{\rm D} = 6 V R_{\rm GK} = \infty$	$T_{\rm VJ} = 25^{\circ}\rm C$			200	m
I _H	holding current						m/
t _{gd}	gate controlled delay time	$V_{\rm D} = \frac{1}{2} V_{\rm DRM}$	$T_{VJ} = 25 ^{\circ}C$			2	μ
	to an all the a	$I_{\rm G} = 0.45 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.45 \text{A}/\mu$			4-4		
t _q	turn-off time	$V_{R} = 100 \text{ V}; I_{T} = 65\text{A}; \text{V} = 100 \text{ V};$			150		μ
		$di/dt = 10 \text{ A}/\mu \text{s} dv/dt = 20 \text{ V}$	V/μs_t _p = 200 μs				

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

20191209d

MCMA65P1600TA

Package TO-240AA			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
	RMS current	per terminal					120	Α
T _{vj}	virtual junction temperature				-40		140	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
M _T	terminal torque		2.5		4	Nm		
d _{Spp/App}	creepage distance on surface striking distance thro		terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}	creepage ustance on surract		terminal to backside	16.0	16.0			mm
V	isolation voltage	t = 1 second			4800			V
	t = 1 minute		50/60 Hz, RMS; liso∟ ≤ 1 mA		4000			V

Part description

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCMA65P1600TA	MCMA65P1600TA	Box	36	512930

Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 140^{\circ}C$
)[R]-	Thyristor		
V _{0 max}	threshold voltage	0.85		V
$\mathbf{R}_{0 \max}$	slope resistance *	3.6		mΩ

IXYS reserves the right to change limits, conditions and dimensions.

20191209d

Outlines TO-240AA

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red Type ZY 200L (L = Left for pin pair 4/5) Type ZY 200R (R = Right for pin pair 6/7) UL 758, style 3751

MCMA65P1600TA

Thyristor

1200

 I_{TSM}^{800}

400

100.0

10.0

1.0

0.1

0.01

0.10

t_{gd}

0.01

[A]

50 Hz, 80% V

40'

0.1

t [s]

 \mathbf{I}_{TSM} : crest value, t: duration

T_{VJ} = 25°C

1.00

I_G [A]

Fig. 5 Gate controlled delay time t_{ad}

lim

10.00

Fig. 2 Surge overload current

45°C V.I

Fig. 1 Forward characteristics

Fig. 4 Gate voltage & gate current

Fig. 7b and ambient temperature

© 2019 IXYS all rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCR Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

DT430N22KOF T1851N60TOH T420N12TOF T470N16TOF T901N36TOF TD162N16KOF-A TD330N16AOF T300N14TOF T390N16TOF T460N24TOF TD570N16KOF TD180N16KOF VSKE236/16PBF T1081N60TOH TT61N08KOF TT162N08KOF T2001N34TOF T901N35TOF T1080N02TOF T360N22TOF TZ810N22KOF T420N18TOF T420N14TOF TD305N16KOF T740N26TOF T360N24TOF T430N16TOF T300N16TOF TD520N22KOF TT305N16KOF TT270N16KOF TD600N16KOF T740N22TOF T640N12TOF T470N12TOF NTE5728 ETZ1100N16P70HPSA1 T430N18TOF TD700N22KOFHPSA1 T3441N52TOH T2851N48TOH TD820N16KOFHPSA1 MCD501-16IO2 MCD501-18IO2 SK 100 KQ 12 SK 45 UT 16 SKKT 106B12 E SKKT 27/16E VS-ST180S12P0VPBF PSET132/16