Thyristor Module

Phase leg

Part number

MCMA65P1600TA

$\mathrm{V}_{\text {RRM }}=2 \times 1600 \mathrm{~V}$	
$\mathrm{I}_{\text {TAV }}=$	65 A
$\mathrm{~V}_{\mathrm{T}}$	$=1.17 \mathrm{~V}$

NNN2873

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying $50 / 60 \mathrm{~Hz}$
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Thyristo					ating			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
$\mathrm{V}_{\text {RSMDSM }}$	max. non-repetitive reverse/forward blocking voltage		$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$			1700	V	
$\mathrm{V}_{\text {RrMIdrm }}$	max. repetitive reverse/forward blocking voltage		$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			1600	V	
$\mathrm{I}_{\mathrm{R} / \mathrm{D}}$	reverse current, drain current	$\mathrm{V}_{\mathrm{RID}}=1600 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$	
		$V_{\text {R/D }}=1600 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v},}=140^{\circ} \mathrm{C}$			10	mA	
\bar{V}_{T}	forward voltage drop	$\mathrm{I}_{T}=65 \mathrm{~A}$	$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			1.20	V	
		$\mathrm{I}_{\mathrm{T}}=130 \mathrm{~A}$				1.45	V	
		$\mathrm{I}_{\mathrm{T}}=65 \mathrm{~A}$	$\mathrm{T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C}$			1.17	V	
		$\mathrm{I}_{T}=130 \mathrm{~A}$				1.48	V	
$\mathrm{I}_{\text {TaV }}$	average forward current	$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{vj}}=140^{\circ} \mathrm{C}$			65	A	
$\mathrm{I}_{\text {T(RMS) }}$	RMS forward current	180° sine				105	A	
$\mathrm{V}_{\text {To }}$			$\mathrm{T}_{\mathrm{vj}}=140^{\circ} \mathrm{C}$			0.85	V	
$\mathbf{r}_{\text {T }}$					4.8	$\mathrm{m} \Omega$		
$\mathrm{R}_{\text {thJc }}$	thermal resistance junction to case						0.5	K/W
$\mathbf{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.2		K/W	
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			230	W	
$\mathrm{I}_{\text {TSM }}$	max. forward surge current	$\mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz})$, sine	$\mathrm{T}_{\mathrm{vs}}=45^{\circ} \mathrm{C}$			1.15	kA	
		$\mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz})$, sine	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$			1.24	kA	
		$\mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz})$, sine	$\mathrm{T}_{\mathrm{v} s}=140^{\circ} \mathrm{C}$			980	A	
		$\mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz})$, sine	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$			1.06	kA	
12t	value for fusing	$\mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz})$, sine	$\mathrm{T}_{\mathrm{v} j}=45^{\circ} \mathrm{C}$			6.62	$k^{2}{ }^{2}$	
		$\mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz})$, sine	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$			6.40	$k^{2}{ }^{2}$	
		$\mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz})$, sine	$\mathrm{T}_{\mathrm{v} J}=140^{\circ} \mathrm{C}$			4.80	$\mathrm{kA}^{2} \mathrm{~S}$	
		$\mathrm{t}=8,3 \mathrm{~ms}$; (60 Hz), sine	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$			4.63	$\mathrm{kA}^{2} \mathrm{~s}$	
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		54		pF	
P_{GM}	max. gate power dissipation	$\mathrm{t}_{\mathrm{p}}=30 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{C}}=140^{\circ} \mathrm{C}$			10	W	
		$\mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s}$				5	W	
$\mathrm{P}_{\mathrm{GAV}}$	average gate power dissipation					0.5	W	
(di/dt) ${ }_{\text {cr }}$	critical rate of rise of current	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=140^{\circ} \mathrm{C} ; \mathrm{f}=50 \mathrm{~Hz} \quad \text { repetitive, } \mathrm{I}_{\mathrm{T}}=195 \mathrm{~A} \\ & \mathrm{t}_{\mathrm{P}}=200 \mu \mathrm{~s} ; \mathrm{di} / \mathrm{dt}=0.45 \mathrm{~A} / \mu \mathrm{s} ; \\ & \mathrm{I}_{\mathrm{G}}=0.45 \mathrm{~A} ; \mathrm{V}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \quad \text { non-repet., } \mathrm{I}_{\mathrm{T}}=65 \mathrm{~A} \end{aligned}$				150	A/ $\mu \mathrm{s}$	
						500	A/ $/ \mathrm{s}$	
$\overline{(d v / d t)})_{\text {cr }}$	critical rate of rise of voltage	$\begin{aligned} & \mathrm{V}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{R}_{\mathrm{GK}}=\infty ; \text { method } 1 \text { (lineal } \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=140^{\circ} \mathrm{C}$			1000	$\mathrm{V} / \mu \mathrm{s}$	
$\overline{V_{\text {GT }}}$	gate trigger voltage	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			1.5	V	
			$\mathrm{T}_{\mathrm{vj}}=-40^{\circ} \mathrm{C}$			1.6	V	
$I_{\text {GT }}$	gate trigger current	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			95	mA	
			$\mathrm{T}_{\mathrm{v} s}=-40^{\circ} \mathrm{C}$			200	mA	
$\overline{\mathrm{V} \text { GD }}$	gate non-trigger voltage	$\mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\text {DRM }}$	$\mathrm{T}_{\mathrm{v},}=140^{\circ} \mathrm{C}$			0.2	V	
I_{GD}	gate non-trigger current					10	mA	
I_{L}	latching current	$\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			200	mA	
		$\mathrm{I}_{G}=0.45 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.4$						
I_{H}	holding current	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} \quad \mathrm{R}_{\mathrm{GK}}=\infty$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			200	mA	
t_{gd}	gate controlled delay time	$\mathrm{V}_{\mathrm{D}}=1 / 2 \mathrm{~V}_{\text {DRM }}$	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			2	$\mu \mathrm{s}$	
		$\mathrm{I}_{\mathrm{G}}=0.45 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.4$						
$\mathbf{t}_{\text {a }}$	turn-off time	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V} ; \mathrm{I}_{\mathrm{T}}=65 \mathrm{~A} ; \mathrm{V}=2 / 3 \mathrm{~V}_{\text {DRM }} \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \\ & \mathrm{di} / \mathrm{dt}=10 \mathrm{~A} / \mu \mathrm{s} \mathrm{dv} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s} \mathrm{t}_{\mathrm{p}}=200 \mu \mathrm{~s} \end{aligned}$			150		$\mu \mathrm{s}$	

Package	TO-240AA		Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{I}_{\text {Rms }}$	RMS current per terminal				120	A
T_{vj}	virtual junction temperature		-40		140	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		125	${ }^{\circ} \mathrm{C}$
Weight				81		g
$\begin{aligned} & \mathbf{M}_{\mathrm{D}} \\ & \mathbf{M}_{\mathrm{T}} \end{aligned}$	mounting torque terminal torque		$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		4	Nm Nm
$\mathbf{d}_{\text {Spp/App }}$ $\mathbf{d}_{\text {spb/Apb }}$	creepage distance on surface / striking distance through air	terminal to terminal 13.0 terminal to backside 16.0	$\begin{array}{r} 9.7 \\ 16.0 \end{array}$			mm mm
$\mathrm{V}_{\text {Isol }}$	isolation voltage $\quad$$\mathrm{t}=1$ second $\mathrm{t}=1$ minute	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$; lisol $\leq 1 \mathrm{~mA}$	$\begin{aligned} & 4800 \\ & 4000 \end{aligned}$			V V

Date Code

Part description

$\mathrm{M}=$ Module
$\mathrm{C}=$ Thyristor (SCR)
$\mathrm{M}=$ Thyristor
$\mathrm{A}=$ (up to 1800 V)
$65=$ Current Rating $[\mathrm{A}]$
$P=$ Phase leg
$1600=$ Reverse Voltage [V]
TA $=$ TO-240AA-1B

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCMA65P1600TA	MCMA65P1600TA	Box	36	512930

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{vJ}}=140^{\circ} \mathrm{C}$
 Thyristor
$\mathbf{V}_{0 \text { max }}$ threshold voltage 0.85
V
$\mathbf{R}_{0 \text { max }}$ slope resistance * $3.6 \quad \mathrm{~m} \Omega$

Outlines TO-240AA

General tolerance: DIN ISO 2768 class „c"

Optional accessories for modules
Keyed gate/cathode twin plugs with wire length $=350 \mathrm{~mm}$, gate $=$ white, cathode $=$ red Type ZY 200L (L = Left for pin pair 4/5) $\}$
Type ZY 200R ($\mathrm{R}=$ = Right for pin pair 6/7) $\}$ UL 758, style 3751

Thyristor

Fig. 1 Forward characteristics

Fig. 4 Gate voltage \& gate current

t [s]
Fig. 2 Surge overload current $\mathrm{I}_{\text {TSM }}$: crest value, t: duration

Fig. 5 Gate controlled delay time t_{gd}

Fig. $3 I^{2}$ t versus time (1-10 s)

Fig. 6 Max. forward current at case temperature

Fig. 7a Power dissipation versus direct output current Fig. 7b and ambient temperature

Fig. 8 Transient thermal impedance junction to case

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SCR Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
DT430N22KOF T1851N60TOH T420N12TOF T470N16TOF T901N36TOF TD162N16KOF-A TD330N16AOF T300N14TOF
T390N16TOF T460N24TOF TD570N16KOF TD180N16KOF VSKE236/16PBF T1081N60TOH TT61N08KOF TT162N08KOF
T2001N34TOF T901N35TOF T1080N02TOF T360N22TOF TZ810N22KOF T420N18TOF T420N14TOF TD305N16KOF T740N26TOF T360N24TOF T430N16TOF T300N16TOF TD520N22KOF TT305N16KOF TT270N16KOF TD600N16KOF T740N22TOF T640N12TOF T470N12TOF NTE5728 ETZ1100N16P70HPSA1 T430N18TOF TD700N22KOFHPSA1 T3441N52TOH T2851N48TOH TD820N16KOFHPSA1 MCD501-16IO2 MCD501-18IO2 SK 100 KQ 12 SK 45 UT 16 SKKT 106B12 E SKKT 27/16E VS-

ST180S12P0VPBF PSET132/16

