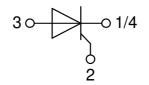


Thyristor

MCO75-12io1

V_{RRM}	=	1200 V
I _{tav}	=	80 A
V _T	=	1.27 V

Single Thyristor


Part number

MCO75-12io1

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper
- internally DCB isolated
- Advanced power cycling

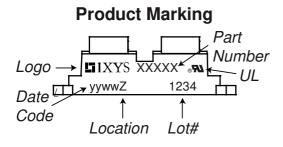
Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

MCO75-12io1

Thyristo	r				Ratings	5	1
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM/DSM}	max. non-repetitive reverse/forwa	ard blocking voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V _{RRM/DRM}	max. repetitive reverse/forward b	locking voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _{R/D}	reverse current, drain current	V _{R/D} = 1200 V	$T_{vJ} = 25^{\circ}C$			50	μA
		V _{R/D} = 1200 V	$T_{VJ} = 125^{\circ}C$			10	mA
V _T	forward voltage drop	$I_{T} = 75 A$	$T_{vJ} = 25^{\circ}C$			1.28	V
		$I_{T} = 150 \text{ A}$				1.60	V
		$I_{T} = 75 A$	$T_{vJ} = 125 \degree C$			1.27	V
		I _T = 150 A				1.67	V
ITAV	average forward current	$T_c = 80^{\circ}C$	$T_{vJ} = 150 ^{\circ}C$			80	A
I _{T(RMS)}	RMS forward current	180° sine				125	A
V _{T0}	threshold voltage	oss calculation only	$T_{vJ} = 150^{\circ}C$			0.85	V
r _T	slope resistance	oss calculation only				5.5	mΩ
R _{thJC}	thermal resistance junction to cas	se				0.45	K/W
R _{thCH}	thermal resistance case to heatsi	ink			0.1		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			270	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			1.07	kA
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			1.16	kA
		t = 10 ms; (50 Hz), sine	$T_{vJ} = 150$ °C			910	Α
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			980	А
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			5.73	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			5.55	kA²s
		t = 10 ms; (50 Hz), sine	$T_{vJ} = 150^{\circ}C$			4.14	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			4.00	kA²s
CJ	junction capacitance	$V_{R} = 400 V f = 1 MHz$	$T_{vJ} = 25^{\circ}C$		54		pF
P _{GM}	max. gate power dissipation	t _P = 30 μs	$T_c = 150^{\circ}C$			10	W
		t _P = 300 μs				5	W
P _{GAV}	average gate power dissipation					0.5	W
(di/dt) _{cr}	critical rate of rise of current	T _{vJ} = 150 °C; f = 50 Hz re	petitive, $I_{T} = 225 \text{ A}$			150	A/µs
		$I_{G} = 0.3 \text{ A}; \text{ V} = \frac{2}{3} \text{ V}_{DRM}$ nc	on-repet., $I_{\tau} = 75 \text{ A}$			500	A/µs
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{vJ} = 150^{\circ}C$			1000	V/µs
		R _{GK} = ∞; method 1 (linear voltag	ge rise)				
V _{GT}	gate trigger voltage	$V_{\rm D} = 6 \text{ V}$	$T_{VJ} = 25^{\circ}C$			1.5	V
			$T_{vJ} = -40^{\circ}C$			1.6	V
I _{GT}	gate trigger current	$V_{D} = 6 V$	$T_{vJ} = 25^{\circ}C$			100	mA
			$T_{vJ} = -40^{\circ}C$			200	mA
V _{gd}	gate non-trigger voltage	$V_{D} = \frac{2}{3} V_{DBM}$	T _{v.l} = 150°C			0.2	V
	gate non-trigger current	2 2				10	mA
	latching current	t _p = 10 μs	$T_{vJ} = 25 °C$			450	mA
-	-	$I_{\rm G} = 0.3 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.3 \text{A}/\mu\text{s}$					
I _H	holding current	$V_{\rm D} = 6 \ V \ R_{\rm GK} = \infty$	$T_{vJ} = 25 ^{\circ}C$			200	mA
t _{gd}	gate controlled delay time	$V_{\rm D} = \frac{1}{2} V_{\rm DRM}$	$T_{\rm VJ} = 25^{\circ}\rm C$			2	μs
- yu		$I_{\rm G} = 0.3 \text{A}; \text{di}_{\rm G}/\text{dt} = 0.3 \text{A}/\mu\text{s}$				_	
t _q	turn-off time	$V_{\rm B} = 100 \text{ V}; \ I_{\rm T} = 75\text{A}; \text{V} = \frac{2}{3}$			150		μs
- q	-	$di/dt = 10 \text{ A}/\mu \text{s} dv/dt = 15 \text{ V}/\mu \text{s}$					وم
		$u_{1}u_{1} = 10 A_{1}\mu_{3} u_{1}u_{1} = 15 V/$	$\mu_{p} = 200 \mu_{s}$				<u> </u>

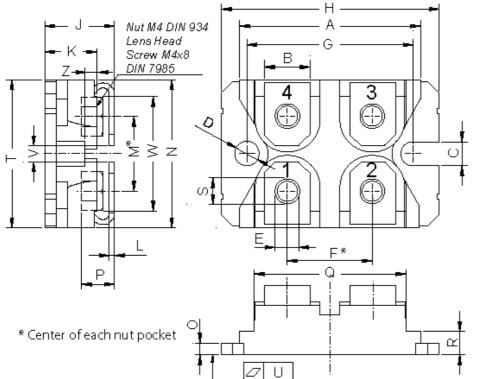

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

20191210c

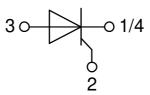
Package	Package SOT-227B (minibloc)			Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
	RMS current	per terminal "					150	А
\mathbf{T}_{v_J}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature						150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
M _T	terminal torque				1.1		1.5	Nm
d _{Spp/App}			terminal to terminal	10.5	3.2			mm
d _{Spb/Apb}	creepage distance on suna	ge distance on surface striking distance through air		8.6	6.8			mm
V	isolation voltage	t = 1 second			3000			V
	t = 1 minute		50/60 Hz, RMS; liso∟ ≤ 1 mA		2500			V

¹⁾ I_{must} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

[Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
	Standard	MCO75-12io1	MCO75-12io1	Tube	10	505515


Equiva	lent Circuits for	Simulation	* on die level	$T_{VJ} = 150^{\circ}C$
)[R]-	Thyristor		
V _{0 max}	threshold voltage	0.85		V
$\mathbf{R}_{0 \max}$	slope resistance *	3.4		mΩ

IXYS reserves the right to change limits, conditions and dimensions.


20191210c

Outlines SOT-227B (minibloc)

Dim.	Millir	neter	Inc	hes
Dim.	min	max	min	max
Α	31.50	31.88	1.240	1.255
B	7.80	8.20	0.307	0.323
С	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
Н	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
К	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
Μ	12.50	13.10	0.492	0.516
Ν	25.15	25.42	0.990	1.001
0	1.95	2.13	0.077	0.084
Ρ	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
Т	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Ζ	2.50	2.70	0.098	0.106

IXYS reserves the right to change limits, conditions and dimensions.

20191210c

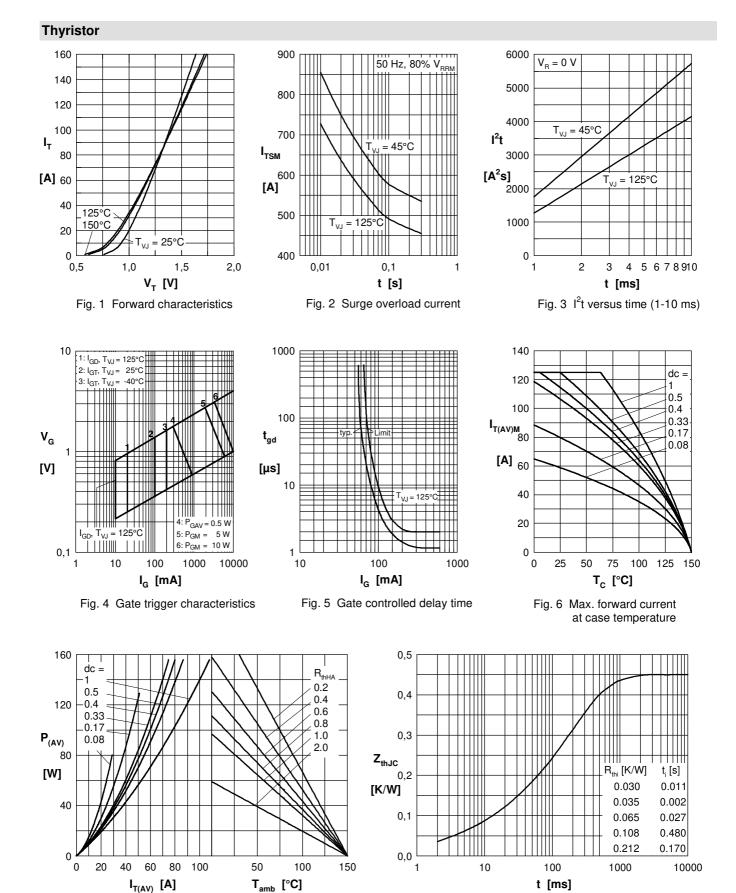


Fig. 7a Power dissipation versus direct output current Fig. 7b and ambient temperature

Fig. 8 Transient thermal impedance junction to case

20191210c

IXYS reserves the right to change limits, conditions and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

<u>M252511FV</u> <u>DD260N12K-A</u> <u>DD380N16A</u>	DD89N1600K-	A APT2X21D	C60J APT58M	80J B522F-2-Y	YEC MSTC90-1	<u>16</u> <u>25.163.0653.1</u>
25.163.2453.0 25.163.4253.0 25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
<u>25.330.4753.1</u> <u>25.330.5253.1</u> <u>25.334.3253.1</u>	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	<u>T485F</u> <u>T485H</u>
<u>T512F-YEB</u> <u>T513F</u> <u>T514F</u> <u>T554</u> <u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
<u>25.332.4353.1</u> <u>25.350.1653.0</u> <u>25.350.2453.0</u>	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0						