

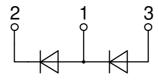
Standard Rectifier Module

= 2x 1600 V

165 A

 V_{F} 1.05 V

Phase leg


Part number

MDD142-16N1

Backside: isolated

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

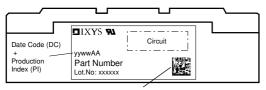
- Diode for main rectification
- For single and three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: Y4

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

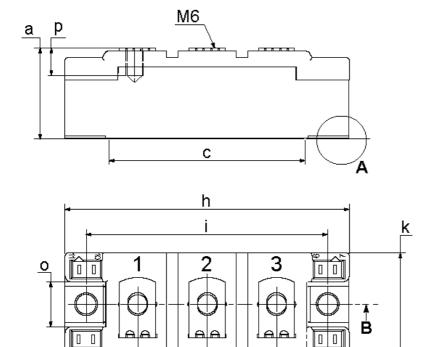
Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.



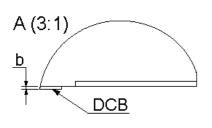
Rectifie	Rectifier			Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1700	V
V_{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1600	V
I _R	reverse current	V _R = 1600 V	$T_{VJ} = 25^{\circ}C$			1	mA
		$V_R = 1600 V$	$T_{VJ} = 150$ °C			20	mΑ
V _F	forward voltage drop	I _F = 150 A	$T_{VJ} = 25^{\circ}C$			1.12	V
		$I_{F} = 300 \text{ A}$				1.30	٧
		$I_F = 150 \text{ A}$	T _{VJ} = 125°C			1.05	V
		$I_F = 300 \text{ A}$				1.26	٧
I FAV	average forward current	T _C = 100°C	T _{VJ} = 150°C			165	Α
F(RMS)	RMS forward current	180° sine				300	Α
V _{F0}	threshold voltage $T_{VJ} = 150$ °C					0.80	٧
r _F	slope resistance	loss calculation only				1.3	mΩ
R _{thJC}	thermal resistance junction to ca	ase				0.21	K/W
R _{thCH}	thermal resistance case to heat	sink			0.08		K/W
P _{tot}	total power dissipation		$T_{\text{C}} = 25^{\circ}\text{C}$			600	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			4.70	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			5.08	kA
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			4.00	kA
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			4.32	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			110.5	kA2s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			107.1	kA2s
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			79.8	kA2s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			77.5	kA2s
CJ	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		238		pF
				1		1	

Package	Package Y4			Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					300	Α
T _{vJ}	virtual junction temperature				-40		150	°C
Top	operation temperature				-40		125	°C
T _{stg}	storage temperature						125	°C
Weight						150		g
M _D	mounting torque				2.25		2.75	Nm
$\mathbf{M}_{_{T}}$	terminal torque				4.5		5.5	Nm
d _{Spp/App}	creepage distance on surface striking distance through		terminal to terminal	14.0	10.0			mm
$d_{Spb/Apb}$			terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second			3600			٧
	t = 1 minu		50/60 Hz, RMS; IISOL ≤ 1 mA		3000			٧

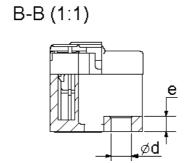
Data Matrix: part no. (1-19), DC + PI (20-25), lot.no.# (26-31), blank (32), serial no.# (33-36)

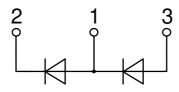

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDD142-16N1	MDD142-16N1	Box	6	430684

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150^{\circ}C$
$I \rightarrow V_0$	-R _o -	Rectifier		
V _{0 max}	threshold voltage	8.0		V
R _{0 max}	slope resistance *	0.7		mΩ



Outlines Y4




m

Dim.	MIN MAX [mm]		MIN [inch]	MAX [inch]	
а	30.0	30.6	1.181	1.205	
b	typ.	0.25	typ. (0.010	
С	64.0	65.0	2.520	2.559	
d	6.5	7.0	0.256	0.275	
е	4.9	5.1	0.193	0.201	
h	93.5	94.5	3.681	3.720	
i	79.5	80.5	3.130	3.169	
k	33.4	34.0	1.315	1.339	
- 1	16.7	17.3	0.657	0.681	
m	22.7	23.3	0.894	0.917	
n	22.7	23.3	0.894	0.917	
0	14.0	15.0	0.551	0.591	
р	typ.	10.5	typ. 0.413		

n

Rectifier

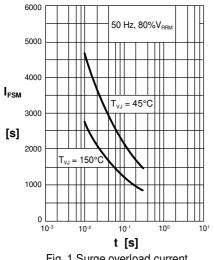


Fig. 1 Surge overload current I_{FSM} : Crest value, t: duration

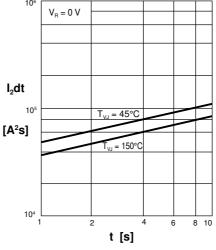


Fig. 2 •12dt versus time (1-10 ms)

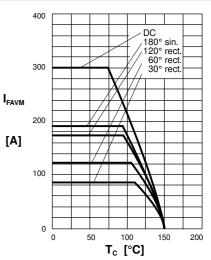


Fig. 2a Maximum forward current at case temperature

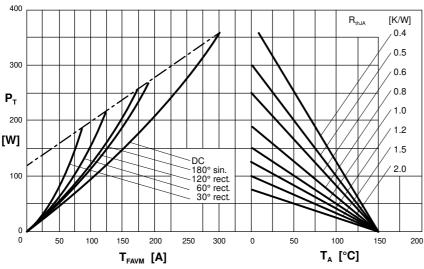
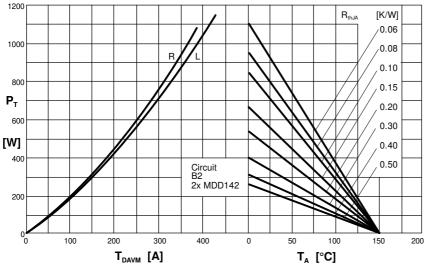



Fig. 3 Power dissipation vs. forward current and ambient temperature (per diode)

R = resistive load L = inductive load

Fig. 4 Single phase rectifier bridge: Power dissipation vs. direct output current and ambient

Rectifier

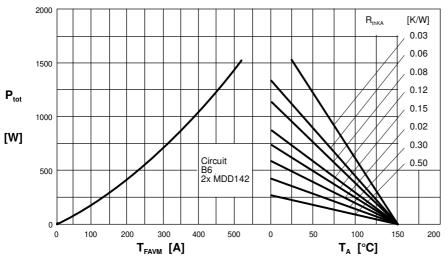


Fig. 5 Three phase rectifier bridge: Power dissipation vs. direct output current and ambient temperature

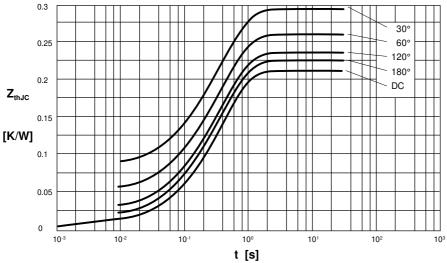


Fig. 6 Transient thermal impedance junction to case (per diode)

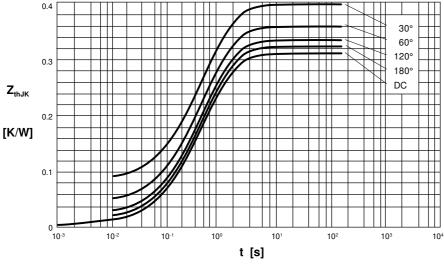


Fig. 7 Transient thermal impedance junction to heatsink (per diode)

R_{thJC} for various conduction angles d:

d	$\mathbf{R}_{thJC}\left[K/W\right]$
DC	0.210
180°	0.223
120°	0.233
60°	0.260
30°	0.295

Constants for Z_{thJC} calculation:

i	$\mathbf{R}_{thi} \left[K/W \right]$	t _i [s]
1	0.0087	0.001
2	0.0163	0.065
3	0.1850	0.400

 R_{thJK} for various conduction angles d:

d	$\mathbf{R}_{thJK} \left[K/W \right]$
DC	0.310
180°	0.323
120°	0.333
60°	0.360
30°	0.395

Constants for Z_{thJK} calculation:

i	$\mathbf{R}_{thi} \left[K/W \right]$	t _i [s]
1	0.0087	0.001
2	0.0163	0.065
3	0.1850	0.400
4	0.1000	1.290

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

<u>M252511FV</u> <u>DD2</u>	60N12K-A	DD380N16A	DD89N1600K-	\underline{A} $\underline{APT2X21D0}$	C60J <u>APT58M</u>	80J B522F-2-Y	YEC MSTC90-1	<u>16</u> <u>25.163.0653.1</u>
25.163.2453.0 25.3	163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
25.330.4753.1 25.3	330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	<u>T485F</u> <u>T485H</u>
T512F-YEB T513	F T514F T	554 <u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
25.332.4353.1 25.3	350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0								