High Power
 Diode Modules

$V_{\text {RSM }}$ V	$V_{\text {RRM }}$ V	Type
1300	1200	MDD 250-12N1
1500	1400	MDD 250-14N1
1700	1600	MDD 250-16N1

Symbol	Conditions			Maximum Ratings	
$\overline{I_{\text {FRMS }}}$ $\mathrm{I}_{\mathrm{FAVM}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{vJM}} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} ; 180^{\circ} \text { sine } \end{aligned}$			450 290	A
$\mathrm{I}_{\text {FSM }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} ; \\ & \mathrm{V}_{\mathrm{R}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline(50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \end{aligned}$	$\begin{array}{r} 11 \\ 11,7 \end{array}$	kA
	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; \\ & \mathrm{V}_{\mathrm{R}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & (50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \end{aligned}$	9 9,6	kA kA
${ }^{12} \mathrm{t}$	$\begin{aligned} & \mathrm{T}_{\mathrm{Vv}}=45^{\circ} \mathrm{C} ; \\ & \mathrm{V}_{\mathrm{R}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & (50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \\ & \hline \end{aligned}$	$\begin{aligned} & 605 \\ & 560 \\ & \hline \end{aligned}$	$\begin{aligned} & {k A^{2} \mathrm{~S}}^{\mathrm{kA}} \mathrm{~S} \end{aligned}$
	$\begin{aligned} & \mathrm{T}_{\mathrm{vJ}}=\mathrm{T}_{\mathrm{vJM}} ; \\ & \mathrm{V}_{\mathrm{R}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & (50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 405 \\ & 380 \end{aligned}$	$\begin{aligned} & {k A^{2} s}^{k A^{2} s} . \end{aligned}$
$\begin{aligned} & \hline \mathbf{T}_{\mathrm{vJ}} \\ & \mathbf{T}_{\mathrm{vJM}} \\ & \mathbf{T}_{\text {stg }} \end{aligned}$				$\begin{array}{r} -40 \ldots+150 \\ 150 \\ -40 \ldots+125 \end{array}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	50/60 Hz, RMS $\mathrm{I}_{\mathrm{ISOL}} \leq 1 \mathrm{~mA}$	$\begin{aligned} & t=1 \mathrm{~min} \\ & t=1 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 3000 \\ & 3600 \end{aligned}$	V V
$\mathbf{M}_{\text {d }}$	Mounting torque (M5)			$\begin{array}{r} 2.5-5 \\ 12-15 \end{array}$	Nm Nm
Weight	Typical including screws			320	g

Symbol	Conditions	Characteristics V	lues
$\mathrm{I}_{\text {RRM }}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }} ; \quad \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}}$	40	mA
V_{F}	$\mathrm{I}_{\mathrm{F}}=600 \mathrm{~A} ; \quad \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	1.3	V
$\mathrm{V}_{\text {T0 }}$	For power-loss calculations only	0.75	V
$\mathrm{r}_{\text {t }}$	$\mathrm{T}_{\mathrm{V},}=\mathrm{T}_{\mathrm{V} \text { M }}$	0.75	$\mathrm{m} \Omega$
$\mathrm{R}_{\text {thJc }}$	per diode; DC current	0.129	K/W
	per module other values	0.065	K/W
$\mathbf{R}_{\text {thJK }}$	per diode; DC current per module	0.169	K/W
		0.0845	K/W
$\mathbf{Q}_{\text {s }}$	$\mathrm{T}_{\mathrm{V} J}=125^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{F}}=400 \mathrm{~A} ;-\mathrm{di} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}$	760	$\mu \mathrm{C}$
$\mathrm{I}_{\text {RM }}$		275	A
$\mathrm{d}_{\text {s }}$	Creeping distance on surface	12.7	mm
d_{A}	Creepage distance in air	9.6	mm
a	Maximum allowable acceleration	50	$\mathrm{m} / \mathrm{s}^{2}$

[^0]$I_{\text {FRSM }}=2 \times 450 \mathrm{~A}$
$I_{\text {FAVM }}=2 \times 290 \mathrm{~A}$
$V_{\text {RRM }}=1200-1600 \mathrm{~V}$

Features

- Direct copper bonded $\mathrm{Al}_{2} \mathrm{O}_{3}$ ceramic base plate
- Planar passivated chips
- Isolation voltage 3600 V~
- UL registered, E 72873

Applications

- Supplies for DC power equipment
- DC supply for PWM inverter
- Field supply for DC motors
- Battery DC power supplies

Advantages

- Space and weight savings
- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits

GIXYS

Dimensions in mm (1 mm = 0.0394")

Threaded spacer for higher Anode / Cathode construction:

Type ZY 250 (material brass)

Fig. 1 Surge overload current ${ }_{\text {FSMM }}$: Crest value, t: duration

Fig. 21^{2} dt versus time ($1-10 \mathrm{~ms}$)

Fig. 2a Maximum forward current at case temperature

Fig. 3 Power dissipation vs. forward current and ambient temperature (per diode)

$R=$ resistive load
L = inductive load

Fig. 4 Single phase rectifier bridge: Power dissipation vs. direct output current and ambient
IXYS reserves the right to change limits, test conditions and dimensions.

Fig. 5 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 7 Transient thermal impedance junction to case (per diode)

Fig. 8 Transient thermal impedance junction to heatsink (per diode)
$R_{\text {thJk }}$ for various conduction angles d :

\mathbf{d}	$R_{\text {thJK }}(K / W)$
$D C$	0.169
180°	0.171
120°	0.172
60°	0.172
30°	0.173

Constants for $Z_{\text {thJK }}$ calculation:

\mathbf{i}	$\mathbf{R}_{\text {thi }}(\mathrm{K} / \mathrm{W})$	$\mathbf{t}_{\mathbf{i}}(\mathbf{s})$
1	0.0035	0.0099
2	0.0165	0.168
3	0.1091	0.456
4	0.04	1.36

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

[^0]: Data according to IEC 60747 and refer to a single diode unless otherwise stated.

