MDD255-12N1

Standard Rectifier Module

$\mathrm{V}_{\text {RRM }}=2 \times 1200 \mathrm{~V}$
$\mathrm{I}_{\mathrm{FAV}}=270 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{F}}=1.08 \mathrm{~V}$

Phase leg

Part number

MDD255-12N1

NㅔN2873

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For single and three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: Y1

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

MDD255-12N1

Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			1300	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			1200	V
I_{R}	reverse current	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=1200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} \nu}=150^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} 500 \\ 20 \end{array}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\bar{V}_{\text {F }}$	forward voltage drop	$\begin{aligned} & I_{F}=300 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=600 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \delta}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.19 \\ & 1.40 \end{aligned}$	V V
		$\begin{aligned} & I_{F}=300 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=600 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \delta}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1.08 \\ & 1.35 \end{aligned}$	V
$\mathrm{I}_{\text {fav }}$	average forward current	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{v} \delta}=150^{\circ} \mathrm{C}$			270	A
$\mathrm{I}_{\text {f(RMS) }}$	RMS forward current	180° sine				450	A
$\begin{aligned} & \overline{V_{\mathrm{FO}}} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$			$\mathrm{T}_{\mathrm{v} \mathrm{J}}=150^{\circ} \mathrm{C}$			$\begin{array}{r} 0.80 \\ 0.6 \end{array}$	V $m \Omega$
$\mathbf{R}_{\text {thuc }}$	thermal resistance junction to case					0.14	K/W
$\mathbf{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.04		K/W
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			890	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current	$\begin{aligned} & t=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 9.80 \\ & 10.6 \end{aligned}$	kA kA
		$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 8.33 \\ & 9.00 \end{aligned}$	kA $k A$
12t	value for fusing	$\begin{aligned} & t=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}), \text { sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 480.2 \\ & 466.1 \end{aligned}$	$\begin{aligned} & k A^{2} \mathrm{~S} \\ & k A^{2} \mathrm{~S} \end{aligned}$
		$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 346.9 \\ & 336.6 \end{aligned}$	$\begin{aligned} & k A^{2} s \\ & k A^{2} s \end{aligned}$
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$		381		pF

MDD255-12N1

Package	Y1		Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMs }}$	RMS current per terminal				600	A
T_{vj}	virtual junction temperature		-40		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		125	${ }^{\circ} \mathrm{C}$
Weight				680		g
	mounting torque				7	
$M_{\text {T }}$	terminal torque		11		13	Nm
$\mathbf{d}_{\text {Spp/App }}$ $\mathbf{d}_{\text {spb/Apb }}$	creepage distance on surface / striking distance through air	terminal to terminal terminal to backside	$\begin{aligned} & \hline 16.0 \\ & 16.0 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$
$\mathrm{V}_{\text {ISOL }}$	isolation voltage $\quad$$\mathrm{t}=1$ second $\mathrm{t}=1$ minute	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$; lisol $\leq 1 \mathrm{~mA}$	$\begin{aligned} & 3600 \\ & 3000 \end{aligned}$			V V

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDD255-12N1	MDD255-12N1	Box	3	461873

Similar Part	Package	Voltage class
MDD255-14N1	Y1-CU	1400
MDD255-16N1	Y1-CU	1600
MDD255-18N1	Y1-CU	1800
MDD255-20N1	Y1-CU	2000

MDD255-22N1	Y1-CU	2200

Equivalent Circuits for Simulation *on die level $\quad T_{v J}=150^{\circ} \mathrm{C}$

$\mathrm{I} \rightarrow \mathrm{~V}_{0}-\sqrt{\mathrm{R}_{0}}$	Rectifier	
$\mathbf{V}_{0 \text { max }} \longrightarrow$ threshold voltage	0.8	V
$\mathbf{R}_{0 \text { max }}$ slope resistance *	0.4	$m \Omega$

Outlines Y1

Rectifier

t [s]
Fig. 1 Surge overload current $\mathrm{I}_{\text {FSM }}$: Crest value, t : duration

t [ms]
Fig. $2 I^{2} t$ versus time ($1-10 \mathrm{~ms}$)

Fig. 3 Max. forward current at case temperature

Fig. 4 Power dissipation vs. forward current \& ambient temperature (per diode)

Fig. 5 Typ. peak reverse current $I_{\text {RM }}$ versus -diF/dt

Fig. 6 Single phase rectifier bridge: Power dissipation vs. direct output current \& ambient temperature. $R=$ resistive load, $L=$ inductive load

Fig. 7 Typ. recovery time $t_{\text {rr }}$ versus - $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Rectifier

Fig. 8 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 9 Transient thermal impedance junction to case (per diode)

Fig. 10 Transient thermal impedance junction to heatsink (per diode)
$\mathrm{R}_{\mathrm{thJC}}$ for various conduction angles d :

\mathbf{d}	$\mathbf{R}_{\text {thJc }}[K / W]$
DC	0.139
180°	0.148
120°	0.156
60°	0.176
30°	0.214

Constants for $\mathrm{Z}_{\text {thJc }}$ calculation:

\mathbf{i}	$\mathbf{R}_{\text {thi }}[\mathbf{K} / \mathbf{W}]$	$\mathbf{t}_{\mathbf{i}}[\mathbf{s}]$
1	0.0066	0.00054
2	0.0358	0.09800
3	0.0831	0.54000
4	0.0129	12.0000

$R_{\text {thjk }}$ for various conduction angles d :

\mathbf{d}	$\mathbf{R}_{\text {thJK }}[K / W]$
DC	0.179
180°	0.188
120°	0.196
60°	0.216
30°	0.254

Constants for $\mathrm{Z}_{\text {thJK }}$ calculation:

\mathbf{i}	$\mathbf{R}_{\text {thi }}(\mathbf{K} / \mathbf{W})$	$\mathbf{t}_{\mathbf{i}} \mathbf{(s)}$
1	0.0066	0.00054
2	0.0358	0.09800
3	0.0831	0.54000
4	0.0129	12.0000
5	0.0400	12.0000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

