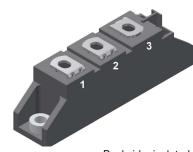
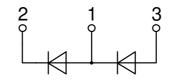


MDD44-12N1B


Standard Rectifier Module

V_{RRM}	<i>=</i> 2x 1200 \				
I _{FAV}	=	59 A			
V _F	=	1.26 V			

Phase leg


Part number

MDD44-12N1B

Backside: isolated

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For single and three phase
- bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

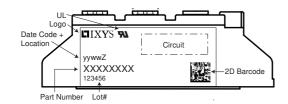
Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.


MDD44-12N1B

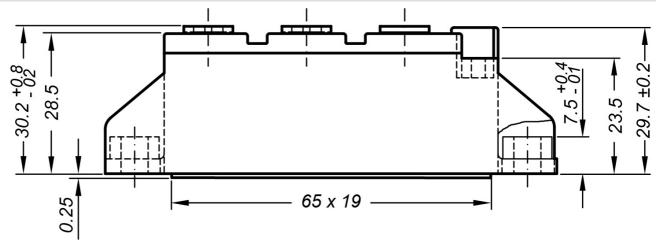
Rectifier	Rectifier			Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1300	V
V _{RRM}	max. repetitive reverse blocking	petitive reverse blocking voltage				1200	V
I _R	reverse current	V_{R} = 1200 V	$T_{VJ} = 25^{\circ}C$			100	μA
		V_{R} = 1200 V	$T_{VJ} = 150^{\circ}C$			10	mA
V _F	forward voltage drop	I _F = 100 A	$T_{VJ} = 25^{\circ}C$			1.30	V
		I _F = 200 A				1.60	V
		$I_{F} = 100 \text{ A}$	$T_{VJ} = 125 \degree C$			1.26	V
		I _F = 200 A				1.67	V
FAV	average forward current	T _c = 100°C	$T_{VJ} = 150^{\circ}C$			59	A
F(RMS)	RMS forward current	180° sine				100	Α
V _{F0}	threshold voltage	$T_{VJ} = 150^{\circ}C$			0.80	V	
r _F	slope resistance } for power	loss calculation only				4.3	mΩ
\mathbf{R}_{thJC}	thermal resistance junction to ca	ase				0.59	K/W
R _{thCH}	thermal resistance case to heats	sink			0.2		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			212	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.15	kA
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			1.24	kA
		t = 10 ms; (50 Hz), sine	$T_{vJ} = 150^{\circ}C$			980	А
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			1.06	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			6.62	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			6.40	kA²s
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150^{\circ}C$			4.80	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			4.63	kA²s
C	junction capacitance	$V_{R} = 400 \text{ V}; \text{ f} = 1 \text{ MHz}$	$T_{vJ} = 25^{\circ}C$		27		pF

20200701d

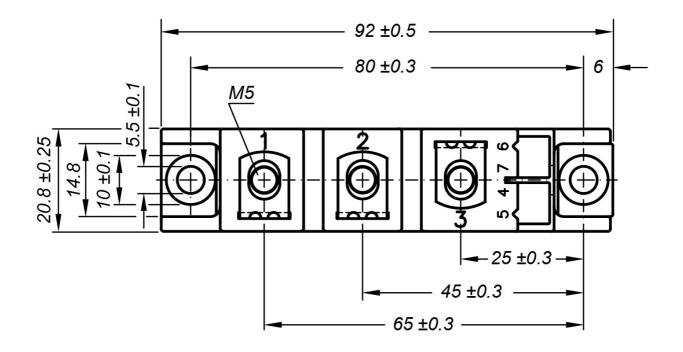
Package	Package TO-240AA		Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
\mathbf{T}_{v_J}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						76		g
M _D	mounting torque				2.5		4	Nm
M _T	terminal torque				2.5		4	Nm
d _{Spp/App}			terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}	creepage distance on surrac	age distance on surface striking distance through air		16.0	16.0			mm
V	isolation voltage	t = 1 second			4800			V
	t = 1 minute		50/60 Hz, RMS; lıso∟ ≤ 1 mA		4000			V

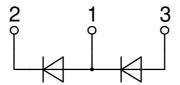
Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDD44-12N1B	MDD44-12N1B	Box	36	458023

Similar Part	Package	Voltage class
MDD44-08N1B	TO-240AA	800
MDD44-14N1B	TO-240AA	1400
MDD44-16N1B	TO-240AA	1600
MDD44-18N1B	TO-240AA	1800


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150^{\circ}C$
)[R	Rectifier		
V _{0 max}	threshold voltage	0.8		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	3.1		mΩ

IXYS reserves the right to change limits, conditions and dimensions.


20200701d



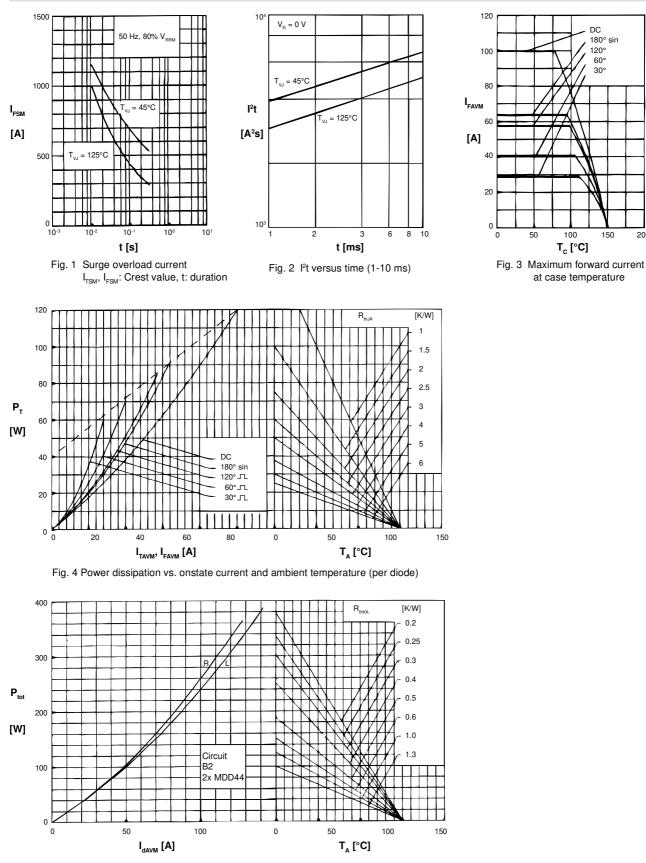
Outlines TO-240AA

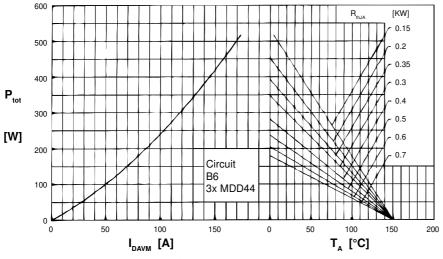
General tolerance: DIN ISO 2768 class "c"

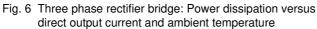
150

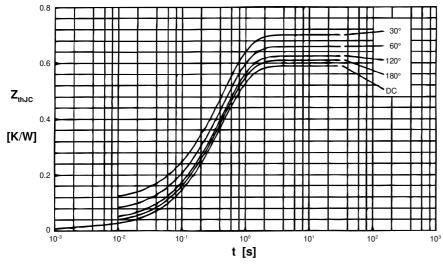
200

Rectifier



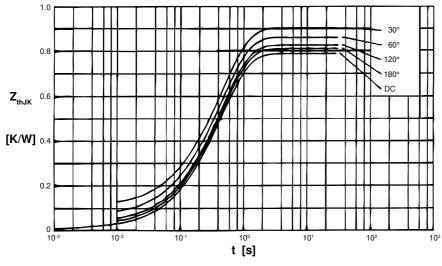

Fig. 6 Single phase rectifier bridge: Power dissipation versus direct output current and ambient temperature; R = resistive load, L = inductive load


IXYS reserves the right to change limits, conditions and dimensions.



MDD44-12N1B

Rectifier



R _{thJC} [K/W]						
0.59						
0.61						
0.63						
0.66						
0.70						
Constants for Z _{thJC} calculation: i R_{thi} [K/W] t_i [s]						
	0.59 0.61 0.63 0.66 0.70 s for Z _{thJC} calcu					

 ${\rm R}_{_{\rm thJC}}$ for various conduction angles d:

		•
1	0.012	0.0012
2	0.045	0.0950
3	0.533	0.4550

Fig. 7 Transient thermal impedance junction to case (per diode)

 R_{thJK} for various conduction angles d: d R_{thJK} [K/W] DC 0.79 180° 0.81 120° 0.83 60° 0.86 30° 0.90 Constants for $\boldsymbol{Z}_{_{thJK}}$ calculation: i R_{thi} [K/W] t_i [s] 0.012 0.0012 1 2 0.045 0.0950 0.4550 3 0.533 4 0.200 0.4950

20200701d

Fig. 8 Transient thermal impedance junction to heatsink (per thyristor)

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

<u>M252511FV</u> <u>DD260N12K-A</u> <u>DD380N16A</u>	DD89N1600K-	A APT2X21D	C60J APT58M	80J B522F-2-Y	YEC MSTC90-1	<u>16</u> <u>25.163.0653.1</u>
25.163.2453.0 25.163.4253.0 25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
<u>25.330.4753.1</u> <u>25.330.5253.1</u> <u>25.334.3253.1</u>	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	<u>T485F</u> <u>T485H</u>
<u>T512F-YEB</u> <u>T513F</u> <u>T514F</u> <u>T554</u> <u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
<u>25.332.4353.1</u> <u>25.350.1653.0</u> <u>25.350.2453.0</u>	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0						