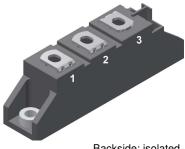


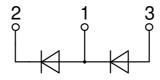
Standard Rectifier Module

= 2x 1800 V


59 A

 V_{F} 1.26 V

Phase leg


Part number

MDD44-18N1B

Backside: isolated

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

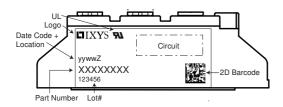
- Diode for main rectification
- For single and three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

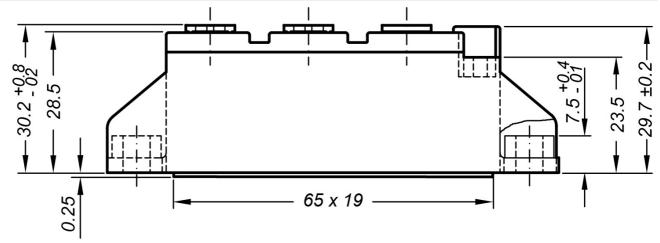
Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

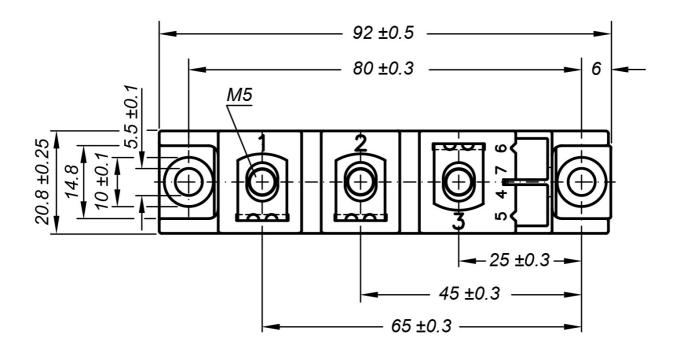


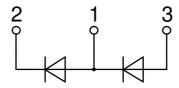
Rectifier				1	Ratings	8	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1900	٧
V_{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1800	V
I _R	reverse current	V _R = 1800 V	$T_{VJ} = 25^{\circ}C$			100	μΑ
		$V_R = 1800 V$	$T_{VJ} = 150$ °C			10	mΑ
V _F	forward voltage drop	I _F = 100 A	$T_{VJ} = 25^{\circ}C$			1.30	V
		$I_F = 200 A$				1.60	٧
		I _F = 100 A	T _{VJ} = 125°C			1.26	V
		$I_F = 200 A$				1.67	V
FAV	average forward current	T _C = 100°C	$T_{VJ} = 150$ °C			59	Α
F(RMS)	RMS forward current	180° sine				100	Α
V _{F0}	threshold voltage slope resistance $T_{VJ} = 150 ^{\circ}\text{C}$					0.80	٧
r _F						4.3	mΩ
R _{thJC}	thermal resistance junction to ca	se				0.59	K/W
R _{thCH}	thermal resistance case to heats	sink			0.2		K/W
P _{tot}	total power dissipation		$T_{\text{C}} = 25^{\circ}\text{C}$			212	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.15	kA
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			1.24	kA
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			980	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.06	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			6.62	kA2s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			6.40	kA2s
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			4.80	kA2s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			4.63	kA2s
CJ	junction capacitance	$V_R = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		27		pF

Package	Package TO-240AA			Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperatur	е			-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature						125	°C
Weight						76		g
M _D	mounting torque				2.5		4	Nm
$\mathbf{M}_{_{T}}$	terminal torque				2.5		4	Nm
d _{Spp/App}	oroonaga diatanaa an aurf	and Latriking diatance through air	terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}	creepage distance on sun	ace striking distance through air	terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second	t = 1 second $t = 1$ minute 50/60 Hz, RMS; IsoL ≤ 1 mA		4800			٧
		t = 1 minute			4000			٧

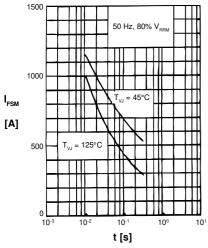

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDD44-18N1B	MDD44-18N1B	Box	36	454397

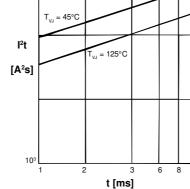
Similar Part	Package	Voltage class
MDD44-08N1B	TO-240AA	800
MDD44-12N1B	TO-240AA	1200
MDD44-14N1B	TO-240AA	1400
MDD44-16N1B	TO-240AA	1600


Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 150$ °C
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.8		V
R_{0max}	slope resistance *	3.1		$m\Omega$



Outlines TO-240AA


General tolerance: DIN ISO 2768 class "c"



Rectifier

 $V_R = 0 V$

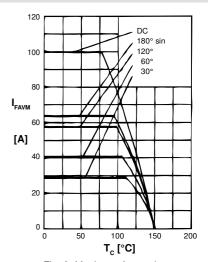


Fig. 1 Surge overload current I_{TSM} , I_{FSM} : Crest value, t: duration

Fig. 2 $\,$ I 2 t versus time (1-10 ms)

Fig. 3 Maximum forward current at case temperature

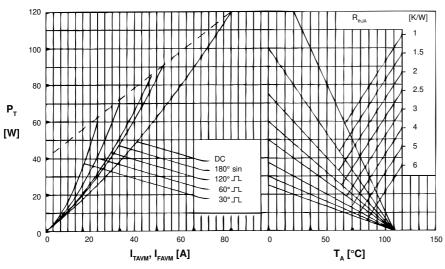


Fig. 4 Power dissipation vs. onstate current and ambient temperature (per diode)

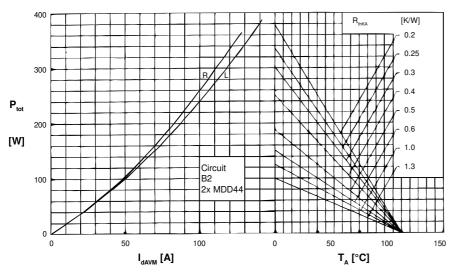


Fig. 6 Single phase rectifier bridge: Power dissipation versus direct output current and ambient temperature; R = resistive load,L = inductive load

Rectifier

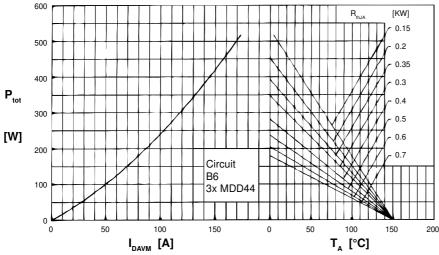


Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

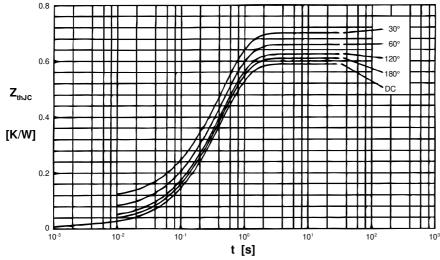


Fig. 7 Transient thermal impedance junction to case (per diode)

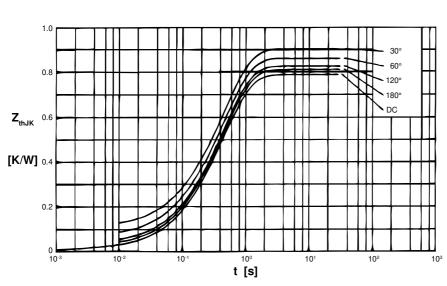


Fig. 8 Transient thermal impedance junction to heatsink (per thyristor)

R_{th,IC} for various conduction angles d:

เทมบ		
	d	$\boldsymbol{R}_{\text{thJC}}\left[\boldsymbol{K}/\boldsymbol{W}\right]$
	DC	0.59
	180°	0.61
	120°	0.63
	60°	0.66
	30°	0.70

Constants for \mathbf{Z}_{thJC} calculation:

i I	R _{thi} [K/W]	t, [s]
1	0.012	0.0012
2	0.045	0.0950
3	0.533	0.4550

 $R_{th,IK}$ for various conduction angles d:

nJK.	-	
	d	R _{thJK} [K/W
	DC	0.79
	180°	0.81
	120°	0.83
	60°	0.86
	30°	0.90

Constants for $\mathbf{Z}_{\text{\tiny thJK}}$ calculation:

i	R _{thi} [K/W]	t _i [s]
1	0.012	0.0012
2	0.045	0.0950
3	0.533	0.4550
4	0.200	0.4950

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

<u>M252511FV</u> <u>DD2</u>	60N12K-A	DD380N16A	DD89N1600K-	\underline{A} $\underline{APT2X21D0}$	C60J <u>APT58M</u>	80J B522F-2-Y	YEC MSTC90-1	<u>16</u> <u>25.163.0653.1</u>
25.163.2453.0 25.3	163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
25.330.4753.1 25.3	330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	<u>T485F</u> <u>T485H</u>
T512F-YEB T513	F T514F T	554 <u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
25.332.4353.1 25.3	350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0								