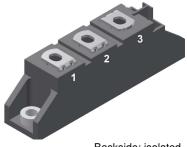


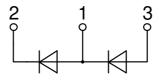
High Voltage Standard Rectifier Module

= 2x 2200 V


140 A

V_E 1.11 V

Phase leg


Part number

MDNA140P2200TG

Backside: isolated

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

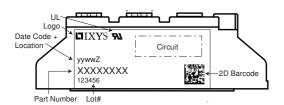
- Diode for main rectification
- For single and three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.



Rectifier	Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			2300	V	
V_{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			2200	V	
I _R	reverse current	V _R = 2200 V	$T_{VJ} = 25^{\circ}C$			100	μΑ	
		$V_R = 2200 \text{ V}$	$T_{VJ} = 150$ °C			3.5	mΑ	
V _F	forward voltage drop	I _F = 140 A	$T_{VJ} = 25^{\circ}C$			1.18	V	
		$I_F = 280 A$				1.43	٧	
		$I_F = 140 \text{ A}$	T _{VJ} = 125°C			1.11	٧	
		$I_F = 280 A$				1.41	٧	
I _{FAV}	average forward current	T _C = 100°C	T _{vJ} = 150°C			140	Α	
		rectangular d = 0.5					i I I I	
V _{F0}	threshold voltage $T_{vJ} = 150$ °C				0.78	٧		
r _F	slope resistance \(\) for power	loss calculation only				2.2	mΩ	
R _{thJC}	thermal resistance junction to ca	ase				0.23	K/W	
R _{thCH}	thermal resistance case to heats	sink			0.2		K/W	
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			540	W	
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			2.80	kA	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			3.03	kA	
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			2.38	kA	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			2.57	kA	
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			39.2	kA2s	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			38.1	kA2s	
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			28.3	kA2s	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			27.5	kA2s	
C	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		116		pF	
				-		-		

MDNA140P2200TG

Package TO-240AA			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						76		g
M _D	mounting torque				2.5		4	Nm
$\mathbf{M}_{_{T}}$	terminal torque				2.5		4	Nm
d _{Spp/App}	oroonogo diotonoo on quef	ace striking distance through air	terminal to terminal	13.0	9.7			mm
$d_{Spb/Apb}$	creepage distance on sun	ace Striking distance through an	terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		4800			V
1002		t = 1 minute			4000			٧

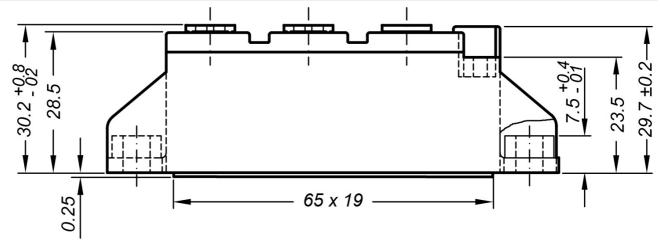
Part description

M = Module

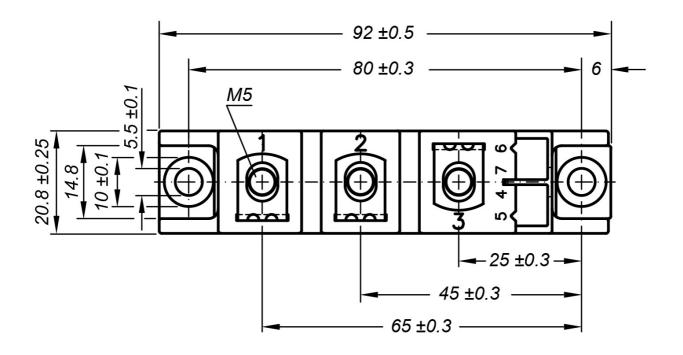
D = Diode
N = High Voltage Standard Rectifier

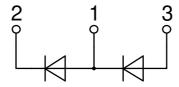
A = (>= 2000V) 140 = Current Rating [A]

P = Phase leg 2200 = Reverse Voltage [V]


TG = TO-240AA

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MDNA140P2200TG	MDNA140P2200TG	Box	36	512934


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150^{\circ}C$
$I \rightarrow V_0$)— <u>R</u> o	Rectifier		
V _{0 max}	threshold voltage	0.78		V
R_{0max}	slope resistance *	1		$m\Omega$



Outlines TO-240AA

General tolerance: DIN ISO 2768 class "c"

Rectifier

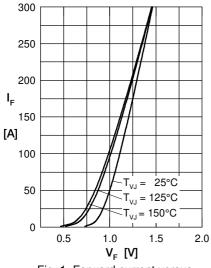


Fig. 1 Forward current versus voltage drop per diode

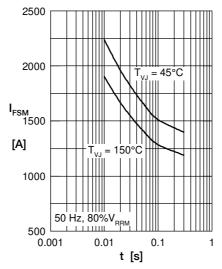


Fig. 2 Surge overload current vs. time per diode

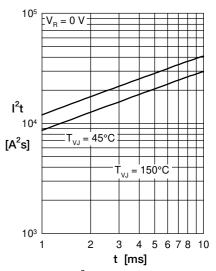


Fig. 3 I²t versus time per diode

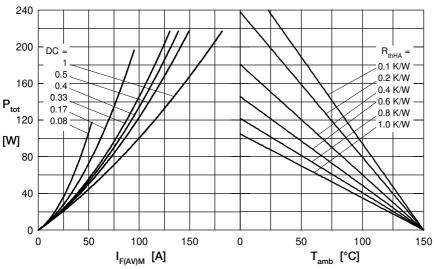


Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

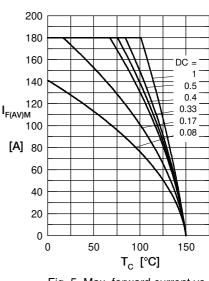


Fig. 5 Max. forward current vs. case temperature per diode

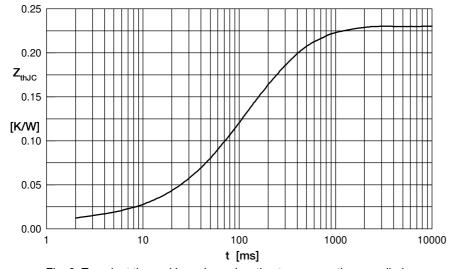


Fig. 6 Transient thermal impedance junction to case vs. time per diode

Constants for Z_{thJC} calculation:

İ	R_{thi} (K/W)	t _i (s)
1	0.01	0.001
2	0.05	0.050
3	0.12	0.150
4	0.05	0.500

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

```
07.471.1280.0 2320160 2320173 25.161.3453.0 25.163.0653.1 25.163.2453.0 25.163.4253.0 25.179.2253.0 25.190.2053.0 25.194.3253.0 25.194.3453.0 25.320.2053.1 25.320.4853.1 25.320.5253.1 25.325.1253.1 25.325.3653.1 25.326.3253.1 25.326.3553.1 25.326.4253.1 25.330.0953.1 25.330.1653.1 25.330.3953.1 25.330.4753.1 25.330.5253.1 25.332.4353.1 25.334.3253.1 25.334.3353.1 25.350.1653.0 25.350.2053.0 25.350.2453.0 25.352.1453.0 25.352.1653.0 25.352.2453.0 25.352.4753.1 25.352.5453.1 25.352.5453.1 25.522.3253.0 25.522.3253.0 25.640.5053.0 25.640.5053.0 2810939 2813583 2866527 2868606 2907719 2950103 APL502J APL602J APT10025JVFR APT10043JVR
```