MII75-12A3

IGBT (NPT) Module

$\mathrm{V}_{\text {CES }}=2 \times 1200 \mathrm{~V}$	
$\mathrm{I}_{\text {C25 }}=$	90 A
$\mathrm{~V}_{\text {CE(sat) }}=$	2.2 V

Phase leg

Part number

MII75-12A3

Backside: isolated
TE72873

Features / Advantages:

- NPT IGBT technology
- low saturation voltage
- low switching losses
- switching frequency up to 30 kHz
- square RBSOA, no latch up
- high short circuit capability
- positive temperature coefficient for easy parallelling
- MOS input, voltage controlled
- ultra fast free wheeling diodes

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
- Switched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: Y4

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

IGBT				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {cES }}$	collector emitter voltage		$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			1200	V
$\mathrm{V}_{\text {GES }}$	max. DC gate voltage					± 20	V
$\mathrm{V}_{\text {GEM }}$	max. transient gate emitter voltage					± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	collector current		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			90	A
$\mathrm{I}_{\mathrm{C} 80}$			$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$			60	A
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			370	W
$\mathrm{V}_{\text {CE(sat) }}$	collector emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} s}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} s}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 2.2 \\ & 2.7 \end{aligned}$	2.7	V V
$\mathrm{V}_{\text {GE(th) }}$	gate emitter threshold voltage	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\text {GE }}=\mathrm{V}_{\text {CE }}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$	4.5	5.5	6.5	V
$\mathrm{I}_{\text {CES }}$	collector emitter leakage current	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {CES }} ; \mathrm{V}_{\text {GE }}=0 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} s}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} s}=125^{\circ} \mathrm{C} \end{aligned}$		6	4	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {GES }}$	gate emitter leakage current	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$				200	nA
$\mathrm{Q}_{\text {G(on) }}$	total gate charge	$\mathrm{V}_{\text {CE }}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=$	50 A		240		nC
$\begin{aligned} & \hline t_{\mathrm{d}(\text { (n) }} \\ & t_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{d}(\mathrm{ff})} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{E}_{\mathrm{on}} \\ & \mathrm{E}_{\mathrm{off}} \end{aligned}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	inductive load $\begin{aligned} & V_{C E}=600 \mathrm{~V} ; I_{C}=50 \mathrm{~A} \\ & V_{G E}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=22 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}$		$\begin{array}{r} 100 \\ 70 \\ 500 \\ 70 \\ 7.6 \\ 5.6 \end{array}$		ns ns ns ns mJ mJ
$\begin{aligned} & \text { RBSOA } \\ & I_{C M} \end{aligned}$	reverse bias safe operating area	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=22 \Omega \\ \mathrm{~V}_{\mathrm{CE} \max }=1200 \mathrm{~V} \end{array}\right.$	$\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}$			100	A
$\begin{aligned} & \overline{\mathrm{SCSOA}} \\ & \mathrm{t}_{\mathrm{sc}} \\ & \mathrm{I}_{\mathrm{sc}} \end{aligned}$	short circuit safe operating area short circuit duration short circuit current	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{CEmax}}=1200 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} \\ \mathrm{R}_{\mathrm{G}}=22 \Omega ; \text { non-repetitive } \end{array}\right.$	$\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}$		180	10	$\mu \mathrm{S}$ A
$\mathrm{R}_{\text {thJc }}$	thermal resistance junction to case					0.33	K/W
$\mathrm{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.33		K/W
Diode							
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse voltage		$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			1200	V
IF 25	forward current		$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$			100	A
$\mathrm{I}_{\text {F80 }}$			$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$			60	A
$\bar{V}_{\text {F }}$	forward voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v}\lrcorner}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} s}=125^{\circ} \mathrm{C} \end{aligned}$		1.80	2.50	V
I_{R}	reverse current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} v}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} v}=125^{\circ} \mathrm{C} \end{aligned}$		1	0.65	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \hline \mathrm{Q}_{\mathrm{r}} \\ & \mathrm{I}_{\mathrm{RM}} \\ & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{E}_{\mathrm{rec}} \end{aligned}$	reverse recovery charge max. reverse recovery current reverse recovery time reverse recovery energy	$\left\{\begin{array}{l} V_{R}=600 \mathrm{~V} \\ -d i_{F} / \mathrm{dt}=400 \mathrm{~A} / \mu \mathrm{s} \\ \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \end{array}\right.$	$\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}$		3.5 40 200 1		$\mu \mathrm{C}$ A ns mJ
$\mathrm{R}_{\text {thJ }}$	thermal resistance junction to case					0.66	K/W
$\mathrm{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.66		K/W

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MII75-12A3	MII75-12A3	Box	6	466735

Equivalent Circuits for Simulation	*on die level	$\mathrm{T}_{\mathrm{v} \delta}=150^{\circ} \mathrm{C}$
$\mathrm{I} \rightarrow \mathrm{~V}_{0}-\mathrm{R}_{0}$	IGBT	Diode
$\mathrm{V}_{0 \text { max }}$ threshold voltage	1.5	1.3 V
$\mathbf{R}_{0 \text { max }}$ slope resistance *	20.1	$10.8 \mathrm{~m} \Omega$

Outlines Y4

IGBT

Fig. 1 Typ. output characteristics

Fig. 4 Typ. turn-on gate charge

Fig. 12 Typical transient thermal impedance

Fig. 2 Typ. output characteristics

Fig. 5 Typ. turn on energy \& switching times versus collector current

Fig. 9 Typ. turn on energy \& switching times versus gate resistor

Fig. 3 Typ. transfer characteristics

Fig. 6 Typ. turn off energy \& switching times versus collector current

Fig. 9 Typ. turn off energy \& switching times versus gate resistor

MII75-12A3

Fig. 1 Typ. Forward current vs. V_{F}

Fig. 2 Typ. transient thermal impedance junction to case

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

