Six-Pack XPT IGBT

Part name (Marking on product)

MIXA10W1200TML

Pin configuration see outlines.

Package:

-E1 package

- Assembly height is 17.1 mm
- Insulated base plate
- Pins suitable for wave soldering and PCB mounting
- UL registered E72873

Ouput Inverter T1-T6

			Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
$\mathrm{V}_{\text {CES }}$	collector emitter voltage	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			1200	V
$\begin{aligned} & \mathbf{V}_{\text {GES }} \\ & \mathbf{V}_{\text {GEM }} \end{aligned}$	max. DC gate voltage max. transient collector gate voltage	continuous transient			$\begin{aligned} & \pm 20 \\ & \pm 30 \end{aligned}$	V
$\begin{aligned} & \mathrm{I}_{\mathrm{C} 25} \\ & \mathrm{I}_{\mathrm{c} 80} \end{aligned}$	collector current	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 17 \\ & 12 \end{aligned}$	A
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			65	W
$\mathrm{V}_{\text {cE(sat) }}$	collector emitter saturation voltage	$\begin{array}{ll}\mathrm{I}_{\mathrm{C}}=9 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} & \mathrm{~T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}\end{array}$		$\begin{aligned} & 1.8 \\ & 2.1 \end{aligned}$	2.1	V
$\mathrm{V}_{\text {GE(th) }}$	gate emitter threshold voltage	$\mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~mA} ; \mathrm{V}_{\text {GE }}=\mathrm{V}_{\text {CE }} \quad \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	5.4	5.9	6.5	V
$\mathrm{I}_{\text {CES }}$	collector emitter leakage current	$\begin{array}{ll}\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\text {CES }} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} & \mathrm{~T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}\end{array}$		$\begin{array}{r} 0.02 \\ 0.3 \end{array}$	0.15	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {GES }}$	gate emitter leakage current	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			500	nA
$Q_{G(o n)}$	total gate charge	$\mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}$		27		nC
$\mathrm{t}_{\mathrm{d}(\mathrm{n})}$ t_{r} $t_{\text {d(off) }}$ t_{f} $E_{\text {on }}$ $E_{\text {off }}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	$\begin{array}{ll} \text { inductive load } & \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} & \\ \mathrm{~V}_{G E}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=100 \Omega & \end{array}$		$\begin{array}{r} 70 \\ 40 \\ 250 \\ 100 \\ 1.1 \\ 1.1 \\ \hline \end{array}$		ns ns ns ns mJ mJ
RBSOA	reverse bias safe operating area	$\begin{array}{r} \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=100 \Omega ; \mathrm{V}_{\mathrm{CEK}}=1200 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \end{array}$			30	A
$\begin{aligned} & \hline I_{\mathrm{sc}} \\ & \text { (SCSOA) } \end{aligned}$	short circuit safe operating area	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=900 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \quad \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{G}}=100 \Omega ; \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s} ; \text { non-repetitive } \\ & \hline \end{aligned}$		40		A
$\begin{aligned} & \mathbf{R}_{\mathrm{thjc}} \\ & \mathbf{R}_{\mathrm{thCH}} \\ & \hline \end{aligned}$	thermal resistance junction to case thermal resistance case to heatsink	(per IGBT)		0.7	2.0	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$

Output Inverter D1 - D6

Module						
			Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
T_{vj}	operating temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {vJM }}$	max. virtual junction temperature				150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	isolation voltage	$\mathrm{I}_{\text {ISOL }} \leq 1 \mathrm{~mA} ; 50 / 60 \mathrm{~Hz}$			2500	V
CTI	comparative tracking index				-	
F_{c}	mounting force		40		80	N
$\mathrm{d}_{\text {s }}$	creep distance on surface		12.7			mm
d_{A}	strike distance through air		12.7			mm
Weight				40		g

Temperature Sensor NTC
Ratings

Symbol	Definitions	Conditions		min.	typ.	max.
\mathbf{R}_{25}	resistance		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	4.75	5.0	5.25
$\mathbf{B}_{25 / 50}$				3375		$\mathrm{k} \Omega$

Equivalent Circuits for Simulation

Typ. NTC resistance versus temperature

Circuit Diagram

Outline Drawing

Part number

M = Module
$\mathrm{I}=\mathrm{IGBT}$
X = XPT
A = standard
10 = Current Rating [A]
W = 6-Pack
$1200=$ Reverse Voltage [V]
T = NTC
ML = E1-Pack

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MIXA 10 W 1200 TML	MIXA10W1200TML	Box	10	510155

IGBT T1-T6

Fig. 1 Typ. output characteristics

Fig. 3 Typ. tranfer characteristics

Fig. 5 Typ. switching energy vs. collector current
IXYS reserves the right to change limits, test conditions and dimensions.

Diode D1 - D6

Fig. 7 Typ. forward characteristics

Fig. 9 Typical peak reverse current I_{RR} versus di$/ \mathrm{dt}\left(125^{\circ} \mathrm{C}\right)$

Fig. 11 Typ. recovery energy $\mathrm{E}_{\text {rec }}$ vs. di $\mathrm{F}_{\mathrm{F}} / \mathrm{dt}\left(125^{\circ} \mathrm{C}\right)$

Fig. 8 Typical reverse recovery charge Q_{rr} versus. di $\mathrm{F}_{\mathrm{F}} / \mathrm{dt}\left(125^{\circ} \mathrm{C}\right)$

Fig. 10 Typ. recovery time t_{rr} vs. di/dt $\left(125^{\circ} \mathrm{C}\right)$

Fig. 12 Transient thermal impedance

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Modules category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
F3L100R07W2E3_B11 F3L15R12W2H3_B27 F3L400R07ME4_B22 F3L400R12PT4_B26 F4-100R12KS4 F4-50R07W2H3_B51 F475R12KS4_B11 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD300R06KE3 FD300R12KE3 FD300R12KS4_B5 FD400R12KE3 FD400R33KF2C-K FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF100R12KS4 FF1200R17KE3_B2 FF150R12KE3G FF200R06KE3 FF200R06YE3 FF200R12KT3 FF200R12KT3_E FF200R12KT4 FF200R17KE3 FF300R06KE3_B2 FF300R12KE4_E FF300R12KS4HOSA1 FF300R12ME4_B11 FF300R12MS4 FF300R17ME4 FF450R12ME4P FF450R17IE4 FF600R12IE4V FF600R12IP4V FF800R17KP4_B2 FF900R12IE4V MIXA30W1200TED MIXA450PF1200TSF FP06R12W1T4_B3 FP100R07N3E4 FP100R07N3E4_B11 FP10R06W1E3_B11 FP10R12W1T4_B11 FP10R12YT3 FP10R12YT3_B4 FP150R07N3E4 FP15R12KT3 FP15R12W2T4

