Converter - Brake - Inverter Module XPT IGBT

Three Phase Rectifier	Brake Chopper	Three Phase Inverter
$\mathrm{V}_{\text {RRM }}=1600 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CES}}=1200 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CES}}=1200 \mathrm{~V}$
$\mathrm{I}_{\mathrm{DAVM}}=105 \mathrm{~A}$	$\mathrm{I}_{\mathrm{C} 25}=17 \mathrm{~A}$	$\mathrm{I}_{\mathrm{C} 25}=17 \mathrm{~A}$
$\mathrm{I}_{\mathrm{FSM}}=320 \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CE}(\text { sat })}=1.8 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CE}(\text { sat) }}=1.8 \mathrm{~V}$

Preliminary data
Part name (Marking on product)
MIXA10WB1200TED

Features:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design
(Xtreme light Punch Through) results in:
- short circuit rated for $10 \mu \mathrm{sec}$.
- very low gate charge
- low EMI
- Thin wafer technology combined with the XPT design results in a competitive low $\mathrm{V}_{\text {CE(sat) }}$
- SONIC ${ }^{\text {TM }}$ diode
- fast and soft reverse recovery
- low operating forward voltage

Application:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
-Welding equipment
- Switched-mode and
resonant-mode power supplies

Package:

- "E2-Pack" standard outline
- Insulated copper base plate
- Soldering pins for PCB mounting
- Temperature sense included

Ouput Inverter T1-T6

				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {CES }}$	collector emitter voltage		$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			1200	V
$\begin{aligned} & \hline \mathbf{V}_{\text {GES }} \\ & \mathbf{V}_{\text {GEM }} \end{aligned}$	max. DC gate voltage max. transient collector gate voltage	continuous transient				$\begin{aligned} & \pm 20 \\ & \pm 30 \end{aligned}$	V
$\begin{aligned} & \mathrm{I}_{\mathrm{C} 25} \\ & \mathrm{I}_{\mathrm{C} 80} \end{aligned}$	collector current		$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \end{aligned}$			17	A
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			60	W
$\mathrm{V}_{\text {CE(sat) }}$	collector emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=9 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1.8 \\ & 2.1 \end{aligned}$	2.1	V
$\mathrm{V}_{\text {GE(th) }}$	gate emitter threshold voltage	$\mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}$	$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$	5.5	6.0	6.5	V
$\mathrm{I}_{\text {ces }}$	collector emitter leakage current	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {CES }} ; \mathrm{V}_{\text {GE }}=0 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{array}{r} 0.01 \\ 0.1 \end{array}$	0.7	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {GES }}$	gate emitter leakage current	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$				500	nA
$\mathbf{Q}_{\mathrm{G}(0 n)}$	total gate charge	$\mathrm{V}_{\text {CE }}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=$			27		nC
$\begin{aligned} & \mathbf{t}_{\mathrm{d}(\text { on })} \\ & \mathbf{t}_{\mathbf{r}} \\ & \mathbf{t}_{\mathrm{d}(\text { ff) })} \\ & \mathbf{t}_{\mathbf{f}} \\ & \mathbf{E}_{\text {on }} \\ & \mathbf{E}_{\text {off }} \\ & \hline \end{aligned}$	$\left.\begin{array}{l}\text { turn-on delay time } \\ \text { current rise time } \\ \text { turn-off delay time } \\ \text { current fall time } \\ \text { turn-on energy per pulse } \\ \text { turn-off energy per pulse }\end{array}\right\}$	inductive load $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=100 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{v} J}=125^{\circ} \mathrm{C}$		$\begin{array}{r} 70 \\ 40 \\ 250 \\ 100 \\ 1.1 \\ 1.1 \\ \hline \end{array}$		ns ns ns ns mJ mJ
RBSOA	reverse bias safe operating area	$\mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=100 \Omega ;$	$\begin{array}{r} \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\text {CEK }}=1200 \mathrm{~V} \end{array}$			30	A
$\begin{aligned} & \hline \text { SCSOA } \\ & \mathbf{t}_{\mathrm{sc}} \\ & \mathrm{I}_{\mathrm{sc}} \\ & \hline \end{aligned}$	short circuit safe operating area short circuit duration short circuit current	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=900 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{G}}=100 \Omega ; \text { non-repetitive } \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{v} j}=125^{\circ} \mathrm{C}$		40	10	$\mu \mathrm{S}$ A
$\mathbf{R}_{\text {thJc }}$	thermal resistance junction to case	(per IGBT)				2.0	K/W

Output Inverter D1 - D6

			Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
$\mathrm{V}_{\text {RRM }}$	max. repetitve reverse voltage		$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		1200	V
$\begin{aligned} & \mathbf{I}_{\mathrm{F} 25} \\ & \mathbf{I}_{\mathrm{F} 80} \end{aligned}$	forward current		$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 19 \\ & 13 \end{aligned}$	A
V_{F}	forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.95 \\ & 1.85 \end{aligned}$	2.2	V
$\begin{aligned} & \mathbf{Q}_{\mathrm{rr}} \\ & \mathbf{I}_{\mathrm{Rm}} \\ & \mathbf{t}_{\mathrm{rr}} \\ & \mathbf{E}_{\mathrm{rec}} \end{aligned}$	$\left.\begin{array}{l}\text { reverse recovery charge } \\ \text { max. reverse recovery current } \\ \text { reverse recovery time } \\ \text { reverse recovery energy }\end{array}\right\}$	$\begin{aligned} & V_{R}=600 \mathrm{~V} \\ & d i_{F} / d t=-\mathrm{A} / \mu \mathrm{s} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}$	tbd tbd tbd tbd		$\begin{array}{r}\mu \mathrm{C} \\ \mathrm{A} \\ \mathrm{ns} \\ \mathrm{mJ} \\ \hline\end{array}$
$\mathrm{R}_{\text {thJc }}$	thermal resistance junction to case	(per diode)			2.4	K/W

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated

Brake T7							
				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {CES }}$	collector emitter voltage		$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			1200	V
$\begin{aligned} & \hline \mathbf{V}_{\text {GES }} \\ & \mathbf{V}_{\text {GEM }} \\ & \hline \end{aligned}$	max. DC gate voltage max. transient collector gate voltage	continuous transient				$\begin{aligned} & \pm 20 \\ & \pm 30 \end{aligned}$	V
$\begin{aligned} & \mathbf{I}_{\mathrm{C} 25} \\ & \mathbf{I}_{\mathrm{C} 80} \\ & \hline \end{aligned}$	collector current		$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 17 \\ & 12 \end{aligned}$	A
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			60	W
$\mathbf{V}_{\text {cE(sat) }}$	collector emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=9 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{V},}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1.8 \\ & 2.1 \end{aligned}$	2.1	V
$\mathrm{V}_{\text {GE(th) }}$	gate emitter threshold voltage	$\mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}$	$\mathrm{T}_{\mathrm{v} j}=25^{\circ} \mathrm{C}$	5.5	6.0	6.5	V
$\mathrm{I}_{\text {cES }}$	collector emitter leakage current	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {CES }} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=125^{\circ} \mathrm{C} \end{aligned}$		0.1	0.1	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {GES }}$	gate emitter leakage current	$\mathrm{V}_{\text {GE }}= \pm 20 \mathrm{~V}$				500	nA
$\mathrm{Q}_{\mathrm{G}(\mathrm{on)}}$	total gate charge	$\mathrm{V}_{\text {CE }}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=$			27		nC
$\begin{aligned} & \mathbf{t}_{\mathrm{d}(\text { on })} \\ & \mathbf{t}_{\mathrm{r}} \\ & \mathbf{t}_{\mathrm{d}(\text { off })} \\ & \mathbf{t}_{\mathrm{f}} \\ & \mathbf{E}_{\text {on }} \\ & \mathbf{E}_{\mathrm{offf}} \\ & \hline \end{aligned}$	$\left.\begin{array}{l}\text { turn-on delay time } \\ \text { current rise time } \\ \text { turn-off delay time } \\ \text { current fall time } \\ \text { turn-on energy per pulse } \\ \text { turn-off energy per pulse }\end{array}\right\}$	inductive load $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=100 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{v} j}=125^{\circ} \mathrm{C}$		$\begin{array}{r} 70 \\ 40 \\ 250 \\ 100 \\ 1.1 \\ 1.1 \\ \hline \end{array}$		ns ns ns ns mJ mJ
RBSOA	reverse bias safe operating area	$\mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=100 \Omega ;$	$\begin{array}{r} \mathrm{T}_{\mathrm{V},}=125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CEK}}=1200 \mathrm{~V} \\ \hline \end{array}$			30	A
$\begin{aligned} & \hline \text { SCSOA } \\ & \mathbf{t}_{\mathrm{sc}} \\ & \mathrm{I}_{\mathrm{sc}} \\ & \hline \end{aligned}$	short circuit safe operating area short circuit duration short circuit current	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=900 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{G}}=100 \Omega ; \text { non-repetitive } \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{v} J}=125^{\circ} \mathrm{C}$		40	10	$\begin{array}{r}\mu \mathrm{S} \\ \mathrm{A} \\ \hline\end{array}$
$\mathbf{R}_{\text {thJc }}$	thermal resistance junction to case	(per IGBT)				2.0	K/W

Brake Chopper D7

			Ratings				
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse voltage		$\mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$			1200	V
$\begin{aligned} & \mathrm{I}_{\mathrm{F} 25} \\ & \mathrm{I}_{\mathrm{F} 80} \end{aligned}$	forward current		$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \end{aligned}$			12 8	A
V_{F}	forward voltage	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}^{\prime}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1.95 \\ & 1.85 \end{aligned}$	2.2	V
I_{R}	reverse current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \end{aligned}$		0.5	0.5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \mathbf{Q}_{\mathrm{rr}} \\ & \mathbf{I}_{\mathrm{RM}} \\ & \mathbf{t}_{\mathrm{rr}} \\ & \mathbf{E}_{\mathrm{rec}} \end{aligned}$	$\left.\begin{array}{l} \text { reverse recovery charge } \\ \text { max. reverse recovery current } \\ \text { reverse recovery time } \\ \text { reverse recovery energy } \end{array}\right\}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} \\ & d \mathrm{i}_{\mathrm{F}} / \mathrm{dt}=\mathrm{tbd} \mathrm{~A} / \mathrm{ss} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C}$		tbd tbd tbd tbd		$\mu \mathrm{C}$ A ns $\mu \mathrm{J}$
$\mathbf{R}_{\text {thJc }}$	thermal resistance junction to case	(per diode)				3.4	K/W

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated

Input Rectifier Bridge D11-D16

				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse voltage		$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$			1600	V
$\mathrm{I}_{\text {FAV }}$ $\mathrm{I}_{\text {DaVM }}$	average forward current max. average DC output current	sine 180° rect.; $d=1 / 3$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} 37 \\ 105 \\ \hline \end{array}$	A
$\mathrm{I}_{\text {FSM }}$	max. forward surge current	$\mathrm{t}=10 \mathrm{~ms} ;$ sine 50 Hz	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \hline 320 \\ & 280 \\ & \hline \end{aligned}$	A
$\mathrm{I}^{2} \mathrm{t}$	${ }^{2} t$ value for fusing	$\mathrm{t}=10 \mathrm{~ms} ;$ sine 50 Hz	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{V} J}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 510 \\ & 390 \end{aligned}$	$\begin{aligned} & \mathrm{A}^{2} \mathrm{~S} \\ & \mathrm{~A}^{2} \mathrm{~S} \end{aligned}$
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			110	W
V_{F}	forward voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vv}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1.34 \\ & 1.34 \\ & \hline \end{aligned}$	1.7	V V
I_{R}	reverse current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=125^{\circ} \mathrm{C} \end{aligned}$		0.2	0.02	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathbf{R}_{\text {thJc }}$	thermal resistance junction to case	(per diode)				1.1	K/W

Temperature Sensor NTC

			Ratings				
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
$\mathbf{R}_{\mathbf{2 5}}$	resistance	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	4.75	5.0	5.25	$\mathrm{k} \Omega$	
$\mathbf{B}_{25 / 50}$				3375		K	

Module

			Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
$\mathrm{T}_{\mathrm{v},}$	operating temperature		-40		125	${ }^{\circ} \mathrm{C}$
T vJM	max. virtual junction temperature				150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	isolation voltage	$\mathrm{I}_{\text {ISOL }} \leq 1 \mathrm{~mA} ; 50 / 60 \mathrm{~Hz}$			2500	V
CTI	comparative tracking index				-	
M_{d}	mounting torque (M5)		3		6	Nm
$\mathrm{d}_{\text {s }}$	creep distance on surface		6			mm
$\mathrm{d}_{\text {A }}$	strike distance through air		6			mm
$\mathbf{R}_{\text {pin-chip }}$	resistance pin to chip			5		$\mathrm{m} \Omega$
$\mathbf{R}_{\text {thcH }}$	thermal resistance case to heatsink	with heatsink compound		0.02		K/W
Weight				180		g

Equivalent Circuits for Simulation

Ratings

$\overrightarrow{v_{0}}$			Ratings			
Symbol	Definitions	Conditions		typ.	max.	Unit
$\begin{aligned} & \mathbf{V}_{0} \\ & \mathbf{R}_{0} \end{aligned}$	rectifier diode	D8-D13	$\mathrm{T}_{\mathrm{v} \mathrm{s}}=150^{\circ} \mathrm{C}$		$\begin{array}{r} 0.88 \\ \hline 9 \\ \hline \end{array}$	$\begin{array}{r}V \\ \mathrm{~m} \Omega \\ \hline\end{array}$
$\begin{aligned} & \hline \mathbf{V}_{0} \\ & \mathbf{R}_{0} \\ & \hline \end{aligned}$	IGBT	T1-T6	$\mathrm{T}_{\mathrm{v} \mathrm{s}}=150^{\circ} \mathrm{C}$		$\begin{array}{r} 1.1 \\ 153 \end{array}$	V $m \Omega$
$\begin{aligned} & \hline \mathbf{V}_{0} \\ & \mathbf{R}_{0} \\ & \hline \end{aligned}$	free wheeling diode	D1- D6	$\mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C}$		$\begin{aligned} & \hline 1.1 \\ & 90 \end{aligned}$	V $m \Omega$
\mathbf{V}_{0} \mathbf{R}_{0}	IGBT	T7	$\mathrm{T}_{\mathrm{v} \mathrm{s}}=150^{\circ} \mathrm{C}$		$\begin{array}{r} 1.1 \\ 153 \end{array}$	V $m \Omega$
\mathbf{V}_{0} \mathbf{R}_{0}	free wheeling diode	D7	$\mathrm{T}_{\mathrm{v} \mathrm{s}}=150^{\circ} \mathrm{C}$		$\begin{array}{r} 1.15 \\ 170 \\ \hline \end{array}$	V $\mathrm{~m} \Omega$

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise stated
IXYS reserves the right to change limits, test conditions and dimensions.

Circuit Diagram

Outline Drawing

Dimensions in $\mathrm{mm}\left(1 \mathrm{~mm}=0.0394^{\prime \prime}\right)$

Product Marking

Part number

$\mathrm{M}=$ Module
$\mathrm{I}=\mathrm{IGBT}$
A $=$ MPT
X = Parallel Legs
$10=$ Current Rating [A]
WB $=6$-Pack $+3 \sim$ Rectifier Bridge \& Brake Unit $1200=$ Reverse Voltage [V]
T = NTC
ED = E2-Pack

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MIXA10WB1200 TED	MIXA10WB1200TED	Box	6	508061

IXYS reserves the right to change limits, test conditions and dimensions.

Fig. 1 Typ. output characteristics

Fig. 3 Typ. tranfer characteristics

Fig. 5 Typ. switching energy vs. collector current IXYS reserves the right to change limits, test conditions and dimensions. © 2009 IXYS All rights reserved

Fig. 6 Typ. switching energy vs. gate resistance

Fig. 7 Typ. forward characteristics

Fig. 9 Typical peak reverse current I_{RR} versus di$/ \mathrm{dt}\left(125^{\circ} \mathrm{C}\right)$

Fig. 11 Typ. recovery energy $\mathrm{E}_{\text {rec }}$ vs. dif $/ \mathrm{dt}\left(125^{\circ} \mathrm{C}\right)$ IXYS reserves the right to change limits, test conditions and dimensions.

Fig. 8 Typical reverse recovery charge $Q_{r r}$ versus. $\mathrm{di}_{\mathrm{F}} / \mathrm{dt}\left(125^{\circ} \mathrm{C}\right)$

Fig. 10 Typ. recovery time t_{π} vs. di/dt $\left(125^{\circ} \mathrm{C}\right)$

Fig. 8 Transient thermal impedance

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Modules category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
F3L400R07ME4_B22 F4-50R07W2H3_B51 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD400R33KF2C-K
FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF200R06YE3 FF300R12KE4_E FF450R12ME4P FF600R12IP4V FP10R06W1E3_B11
FP20R06W1E3 FP50R12KT3 FP75R07N2E4_B11 FS10R12YE3 FS150R07PE4 FS150R12PT4 FS200R12KT4R FS50R07N2E4_B11
FZ1000R33HE3 FZ1800R17KF4 DD250S65K3 DF1000R17IE4 DF1000R17IE4D_B2 DF1400R12IP4D DF200R12PT4_B6
DF400R07PE4R_B6 BSM75GB120DN2_E3223c-Se F3L300R12ME4_B22 F3L75R07W2E3_B11 F4-50R12KS4_B11
F475R07W1H3B11ABOMA1 FD1400R12IP4D FD200R12PT4_B6 FD800R33KF2C-K FF1200R17KP4_B2 FF300R17KE3_S4
FF300R17ME4_B11 FF401R17KF6C_B2 FF650R17IE4D_B2 FF900R12IP4D FF900R12IP4DV STGIF7CH60TS-L FP50R07N2E4_B11
FS100R07PE4 FS150R07N3E4_B11 FS150R17N3E4 FS150R17PE4

