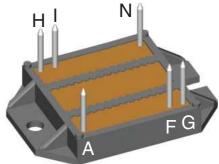

AC Controller Modules


V_{RSM}	V _{RRM}	
V _{DSM} V	V _{DRM} V	Тур
1300	1200	MMO 140-12io7
1700	1600	MMO 140-16io7

Preliminary Data

Symbol	Conditions	Maximum Rat	tings
I _{RMS}	$T_c = 85^{\circ}C$; 50-400 Hz (per single controller)	112	A
TRMS		81	Α
TAVM	$T_{c} = 85^{\circ}C; 180^{\circ} sine$	51	A
I _{TSM}	$T_{VJ} = 45^{\circ}C;$ t = 10 ms (50 Hz)	1000	А
	$V_{R} = 0$ t = 8.3 ms (60 Hz)	1070	A
	$T_{vJ} = 125^{\circ}C; t = 10 \text{ ms}$ (50 Hz)	870	Α
	$V_{\rm R} = 0$ t = 8.3 ms (60 Hz)	930	A
l²t	$T_{vJ} = 45^{\circ}C;$ t = 10 ms (50 Hz)	5000	A ² s
	$V_{\rm B} = 0$ t = 8.3 ms (60 Hz)	4810	A ² s
	$T_{vJ} = 125^{\circ}C; t = 10 ms$ (50 Hz)	3780	A ² s
	$V_{\rm R} = 0$ t = 8.3 ms (60 Hz)	3630	A ² s
(di/dt) _{cr}	$T_{vJ} = 125^{\circ}C;$ repetitive, $I_{T} = 50 \text{ A}$ f = 50 Hz; $t_{p} = 200 \mu\text{s};$	100	A/µs
	$V_{D} = {}^{2}\!/_{3} V_{DRM};$ $I_{G} = 0.45 A;$ $di_{G}/dt = 0.45 A/\mu s$ non repetitive, $I_{T} = I_{TAVM}$	500	A/µs
(dv/dt) _{cr}	$T_{VJ} = 125^{\circ}C; V_{D} = \frac{2}{3} V_{DRM};$ $R_{GK} = \infty;$ method 1 (linear voltage rise)	1000	V/µs
P _{GM}	$T_{y_1} = 125^{\circ}C;$ $t_p = 30 \text{ ms}$	10	W
	$I_{\rm T} = I_{\rm T(AV)M};$ $t_{\rm p} = 300 {\rm ms}$	5	W
P _{GAVM}		0.5	W
V _{RGM}		10	V
T _{vj}		-40+150	°C
T _{VJM}		150	°C
T _{stg}		-40+125	°C
VISOL	50/60 Hz, RMS t = 1 min	2500	V~
	$I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	3000	V~
M _d	Mounting torque (M4)	1.5 - 2.0	Nm
		14 - 18	lb.in.
Weight	Typical including screws	18	g

Features

- Thyristor controller for AC (circuit W1C acc. to IEC) for mains
- frequency • Isolation voltage 3000 V~
- Planar glass passivated chips
- Low forward voltage drop
- Leads suitable for PC board soldering

Applications

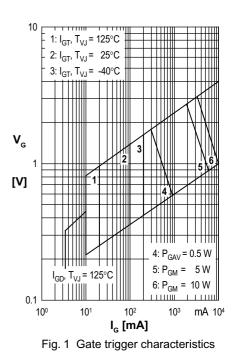
- Switching and control of single and three phase AC circuits
- Light and temperature control
- Softstart AC motor controller
- Solid state switches

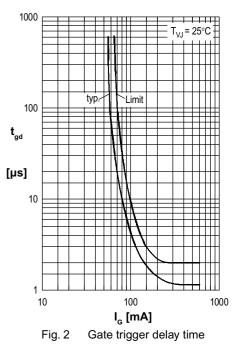
Advantages

- · Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling
- · High power density
- Small and light weight

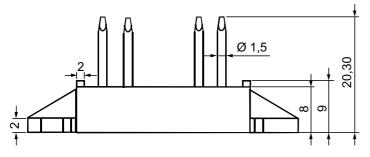
Data according to IEC 60747 and refer to a single diode unless otherwise stated.

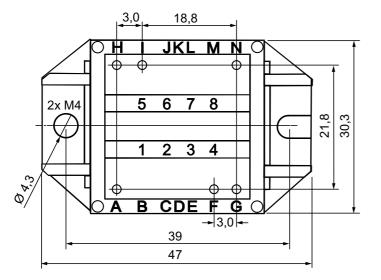
Disclaimer Notice


Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.


IXYS reserves the right to change limits, test conditions and dimensions.

© 2020 IXYS All rights reserved




Symbol	Conditions	Characteristic Values				
			typ.	max.		
I _D , I _R	$V_{\rm R}/V_{\rm D} = V_{\rm RRM}/V_{\rm DRM}$	$T_{VJ} = 125^{\circ}C$		5	mA	
V _T	I _T = 150 A	$T_{VJ} = 25^{\circ}C$		1.57	V	
ν _{το} r _t	For power-loss calculations only			0.85 5.60	V mΩ	
V _{GT}	$V_{D} = 6 V$	$\begin{array}{l} T_{vJ}=~25^{\circ}C\\ T_{vJ}=-40^{\circ}C \end{array}$		1.5 1.9	V V	
I _{GT}	$V_{D} = 6 V$	$\begin{array}{l} T_{vJ}=~25^{\circ}C\\ T_{vJ}=-40^{\circ}C \end{array}$		100 200	mA mA	
V _{gd} I _{gd}	$V_{D} = {}^{2}/_{3} V_{DRM};$	$T_{VJ} = 125^{\circ}C$		0.2 1	V mA	
l	$t_p = 10 \ \mu s;$ $I_G = 0.45 \ A; \ di_G / dt = 0.45 \ A / \mu s$	$T_{vJ} = 25^{\circ}C$		200	mA	
I _H	$V_{D} = 6 V; R_{GK} = \infty;$	$T_{VJ} = 25^{\circ}C$		100	mA	
t _{gd}	$V_{D} = \frac{1}{2}V_{DRM}$ $I_{G} = 0.45 \text{ A}; di_{G}/dt = 0.45 \text{ A}/\mu \text{s}$	$T_{vJ} = 25^{\circ}C$		2	μs	
$\mathbf{R}_{ ext{thJC}}$ $\mathbf{R}_{ ext{thCH}}$	per thyristor; DC current		0.12	0.80	K/W K/W	
R _{thJC} R _{thCH}	per module		0.06	0.40	K/W K/W	
d _s d _A a	Creeping distance on surface Creepage distance in air Maximum allowable acceleration			11.2 5.0 50	mm mm m/s²	

Dimensions in mm (1 mm = 0.0394")

IXYS reserves the right to change limits, test conditions and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

<u>M252511FV</u> <u>DD260N12K-A</u> <u>DD380N16A</u>	DD89N1600K-	A APT2X21D	C60J APT58M	80J B522F-2-Y	EC MSTC90-1	<u>16</u> <u>25.163.0653.1</u>
25.163.2453.0 25.163.4253.0 25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
<u>25.330.4753.1</u> <u>25.330.5253.1</u> <u>25.334.3253.1</u>	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	<u>T485F</u> <u>T485H</u>
<u>T512F-YEB</u> <u>T513F</u> <u>T514F</u> <u>T554</u> <u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
<u>25.332.4353.1</u> <u>25.350.1653.0</u> <u>25.350.2453.0</u>	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0						