
Three phase full Bridge

with Trench MOSFETs in DCB-isolated high-current package

V _{DSS}	=	55 V
D25	=	150 A
R _{DSon typ.}	=	2.2 m Ω

Part number MTC120W55GC

Features / Advantages:

- MOSFETs in trench technology:
 - low $R_{\mbox{\tiny DSon}}$
- optimized intrinsic reverse diodePackage:
 - high level of integration
 - high current capability
 - aux. terminals for MOSFET control
 - terminals for soldering or welding connections
 - isolated DCB ceramic base plate with optimized heat transfer
- Space and weight savings

Applications:

- AC drives
- · in automobiles
- electric power steering
- starter generator
- in industrial vehicles
 - propulsion drives
 - fork lift drives
- in battery supplied equipment

Package: ISOPLUS-DIL®

- · High level of integration
- · RoHS compliant
- High current capability
- Aux. Terminals
 - for MOSFET control
- Terminals for soldering or welding connections
- · Space and weight savings

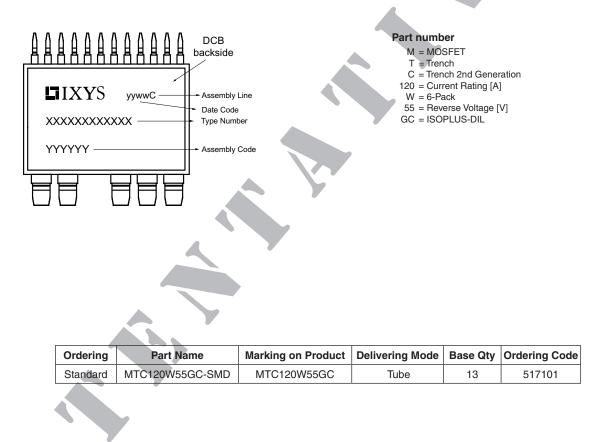
Terms & Conditions of usage The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office. Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

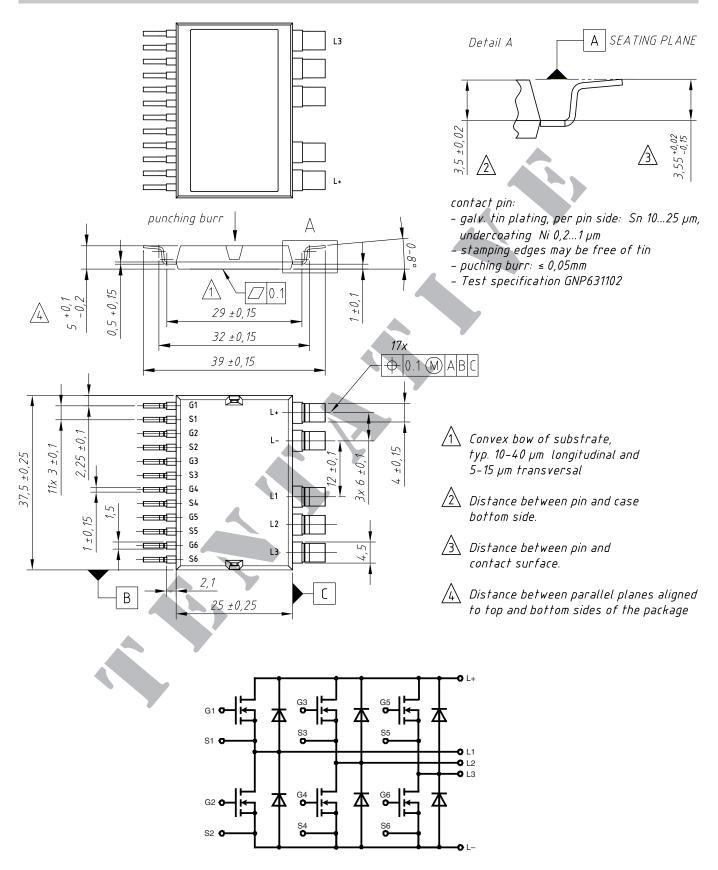
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, test conditions and dimensions.


© 2017 IXYS All rights reserved

MOSFETs				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
V _{DSS}	drain source breakdown voltage	$T_{VJ} = 25$	5°C to 150°C			55	V
V _{GS} V _{GSM}	gate source voltage max. transient gate source voltage					±15 ±20	V V
I _{D25} I _{D80} I _{D100}	continuous drain current		$\begin{array}{rcl} T_{\rm C} &=& 25^{\circ}{\rm C} \\ T_{\rm C} &=& 80^{\circ}{\rm C} \\ T_{\rm C} &=& 100^{\circ}{\rm C} \end{array}$			150 120 106	A A A
R _{DS(on)} ¹⁾	static drain source on resistance	on chip level at $I_D = 100 \text{ A}; V_{GS} = 10 \text{ V}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		2.2 3.7	3.1 5.3	mΩ mΩ
V _{GS(th)}	gate threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}$	$T_{vJ} = 25^{\circ}C$	3.0		4.0	V
I _{DSS}	drain source leakage current	$V_{\rm DS} = V_{\rm DSS}; V_{\rm GS} = 0 \ V$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		50	1	μΑ μΑ
I _{GSS}	gate source leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$				500	nA
R _G	gate resistance	on chip level					Ω
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer capacitance	⁻ V _{GS} = 0 V; V _{DS} = 25 V; f = 1 Mhz			6.97 1.03 230		nF nF pF
Q _g Q _{gs} Q _{gd}	total gate charge gate source charge gate drain (Miller) charge	$V_{GS} = 10 \text{ V}; \text{ V}_{DS} = 28 \text{ V}; \text{ I}_{D} = 100 \text{ A}$			100 35 25		nC nC nC
$f{t}_{d(on)} \ f_r \ f_{d(off)} \ f_f$	turn-on delay time current rise time turn-off delay time current fall time	inductive load $V_{GS} = 10 V; V_{DS} = 24 V$ $V_{DS} = 100 A; P_{DS} = 20 O$	$T_{vj} = 125^{\circ}C$		100 110 500 100		ns ns ns ns
E _{on} E _{off} E _{rec(off)}	turn-on energy per pulse turn-off energy per pulse turn-off reverse recovery losses	$I_{\rm D} = 100 \text{ A}; \text{ R}_{\rm G} = 39 \Omega$			0.12 0.53 0.01		mJ mJ mJ
$\mathbf{R}_{\mathrm{thJC}}$	thermal resistance junction to case					1.0	K/W
\mathbf{R}_{thJH}	thermal resistance junction to heatsink	with heat transfer paste (IXYS test	t setup)		1.3		K/W
		¹⁾ $V_{DS} = I_D \cdot (R_{DS(on)} + 2 \cdot R_{Pin \text{ to Chip}})$					
Source-E	Drain Diode						1 1
_{F25} _{F80} _{F100}	forward current	$V_{GS} = 0 V$	$\begin{array}{rcl} T_{\rm C} &=& 25^{\circ}{\rm C} \\ T_{\rm C} &=& 80^{\circ}{\rm C} \\ T_{\rm C} &=& 100^{\circ}{\rm C} \end{array}$			140 95 80	A A A
$V_{\rm SD}$	source drain voltage	$I_F = 100 \text{ A}; V_{GS} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$		0.9	1.2	V
Q _{RM} I _{RM} t _{rr}	reverse recovery charge max. reverse recovery current reverse recovery time	V _R = 24 V; I _F = 100 A di/dt = 800 A/µs	T _{vJ} = 125°C		0.45 22 38		μC A ns

Package ISOPLUS-DIL®					Ratings			
Symbol	Definitions	Conditions	Conditions				Unit	
I _{RMS}	RMS current		per pin in main current paths (P+, N–, L1, L2, L3) may be additionally limited by external connections (PCB tracks)			300	A	
T _{stg}	storage temperature			-55		125	°C	
T_{VJM}	virtual junction temperature			-55		175	°C	
Weight					25		g	
Fc	mounting force with clip			50		250	Ν	
VISOL	isolation voltage	t = 1 second		1200			V	
		t = 1 minute	50/60 Hz, RMS, $I_{ISOL} \le 1 \text{ mA}$	1000			V	
R _{pin-chip}	resistance terminal to chip	$V_{DS} = I_D \cdot (R_{DS(on)})$	$V_{DS} = I_{D} \cdot (R_{DS(on)} + 2 \cdot R_{pin to chip})$				mΩ	
C _P	coupling capacity	between shorted	between shorted pins and back side metallization				pF	



IXYS reserves the right to change limits, test conditions and dimensions.

LIXYS

MTC120W55GC

Outlines ISOPLUS-DIL®

IXYS reserves the right to change limits, test conditions and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

<u>M252511FV</u> D	D260N12K-A	DD380N16A	DD89N1600K-	A APT2X21D	C60J APT58M	80J <u>B522F-2-Y</u>	TEC MSTC90-1	16 ND104N16K
25.163.0653.1	25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1
25.330.1653.1	25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>
<u>T485F</u> <u>T485H</u>	T512F-YEB 1	<u>T513F</u> <u>T514F</u>	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1
25.330.0953.1	25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0
25.602.4053.0								