Converter - Brake - Inverter Module (CB12) with Trench IGBT technology

Preliminary data

Three Phase Rectifier	Brake Chopper	Three Phase Inverter
$\mathrm{V}_{\text {RRM }}=1600 \mathrm{~V}$	$\mathrm{~V}_{\text {CES }}=1200 \mathrm{~V}$	$\mathrm{~V}_{\text {CES }}=1200 \mathrm{~V}$
$\mathrm{I}_{\text {FAVM }}=38 \mathrm{~A}$	$\mathrm{I}_{\text {C25 }}=30 \mathrm{~A}$	$\mathrm{I}_{\text {C25 }}=30 \mathrm{~A}$
$\mathrm{I}_{\text {FSM }}=300 \mathrm{~A}$	$\mathrm{~V}_{\text {CE(sat) }}=1.7 \mathrm{~V}$	$\mathrm{~V}_{\text {CE(sat) }}=1.7 \mathrm{~V}$

Input Rectifier Bridge D11 - D16			
Symbol	Conditions	Maximum Ratings	
$\mathbf{V}_{\text {RRM }}$		1600	V
$\mathrm{I}_{\text {FAV }}$	$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C} ;$ sine 180°	25	A
$\mathrm{I}_{\mathrm{DAVM}}$	$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C} ;$ rectangular; $\mathrm{d}=1 / 3 ;$; bridge	72	A
$\mathrm{I}_{\text {FSM }}$	$\mathrm{T}_{\mathrm{V} J}=25^{\circ} \mathrm{C} ; \mathrm{t}=10 \mathrm{~ms} ;$ sine 50 Hz	300	A
$\mathbf{P}_{\text {tot }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	100	W

Symbol	Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$, unless otherwise specified)			
		min.	typ.	max	
$V_{\text {F }}$	$\begin{array}{r} \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1.2	V
I_{R}	$\begin{array}{r} \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{V},}=125^{\circ} \mathrm{C} \end{array}$		0.4	0.02	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathbf{R}_{\text {thJc }}$	(per diode)			1.3	KW

Application: AC motor drives with

- Input from single or three phase grid
- Three phase synchronous or asynchronous motor
- electric braking operation

Features

- High level of integration - only one power semiconductor module required for the whole drive
- Inverter with Trench IGBTs
- low saturation voltage
- positive temperature coefficient
- fast switching
- short tail current
- Epitaxial free wheeling diodes with Hiperfast and soft reverse recovery
- Industry standard package with insulated copper base plate and soldering pins for PCB mounting
- Temperature sense included

Output Inverter T1-T6

Symbol	Conditions	Maximum Ratings		
$\mathrm{V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		1200	V
$\mathrm{V}_{\text {GES }}$	Continuous		± 20	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		30	A
$\mathrm{I}_{\mathrm{c} 80}$	$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$		15	A
I_{CM}	$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=1 \mathrm{~ms}$		30	A
$\mathrm{P}_{\text {tot }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		140	W
Symbol	Conditions $\quad\left(T_{V J}=25\right.$	Characteristic Values ($\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$, unless otherwise specified)		
		typ.	max.	
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\begin{array}{r} \mathrm{I}_{\mathrm{C}}=15 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 1.7 \\ & 2.0 \end{aligned}$	2.15	V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}$	5.8	6.5	V
$\mathrm{I}_{\text {ces }}$	$\begin{array}{r} \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CES}} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \end{array}$	0.7	2.7	
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$		400	nA
$\mathrm{C}_{\text {ies }}$	$\mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	1.1		nF
$\mathrm{Q}_{\text {Gon }}$	$\mathrm{V}_{C E}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}$	150		nC
$\mathrm{t}_{\text {d(on) }}$		90		ns
t_{r}	Inductive load, $\mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}$	50		n
$\mathrm{t}_{\text {d(off) }}$	$\} \mathrm{V}_{\text {CE }}=600 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}$	$\begin{array}{r} 520 \\ 90 \end{array}$		ns
$\mathrm{E}_{\text {on }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=75 \Omega$	2.1		mJ
		1.5		mJ
RBSOA	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{CM}} ; \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=75 \Omega ; \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \end{aligned}$	$/_{\text {CEK }} \leq \mathrm{V}_{\text {CES }}-\mathrm{L}_{\mathrm{S}} \mathrm{di} / \mathrm{dt}$		
$\begin{aligned} & \mathrm{I}_{\mathrm{sc}} \\ & \text { (SCSOA) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=720 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=75 \Omega ; \\ & \mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s} ; \text { non-repetitive; } \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \end{aligned}$	60		A
$\mathbf{R}_{\text {thJc }}$	(per IGBT)		0.88	KW

Output Inverter D1 - D6						
Symbol	Conditions	Maximum Ratings				
$\mathrm{I}_{\text {F25 }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \end{aligned}$	25 A				
$\mathrm{I}_{\text {F80 }}$				17	A	
Symbol	Conditions	Characteristic Values min. typ. max.				
V_{F}	$\begin{array}{ll} \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; & \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{V},}=125^{\circ} \mathrm{C} \end{array}$		2.0	2.5		
			1.5			
$\mathrm{I}_{\text {RM }}$	$\left\{\begin{array}{l} \mathrm{I}_{\mathrm{F}}=\operatorname{tbd} \mathrm{A} ; \mathrm{di}_{\mathrm{F}} / \mathrm{dt}=-\mathrm{tbd} \mathrm{~A} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{R}}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \end{array}\right.$		tbd	A$\mu \mathrm{C}$nsmJ		
Q_{rr}			tbd			
$t_{\text {rr }}$			tbd			
$\underline{E_{\text {rec }}}$			tbd			
$\mathrm{R}_{\text {thJc }}$	(per diode)			2.1 KW		

Equivalent Circuits for Simulation

Conduction

IGBT (typ. at $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$) T1-T6

$$
V_{0}=0.92 \mathrm{~V} ; R_{0}=72 \mathrm{~m} \Omega
$$

T7

$$
V_{0}=0.92 \mathrm{~V} ; R_{0}=72 \mathrm{~m} \Omega
$$

Diode (typ. at $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)
D1-D6

$$
V_{0}=t b d V ; R_{0}=t b d m \Omega
$$

D7

$$
V_{o}=t b d V ; R_{o}=t b d m \Omega
$$

D11-D16

$$
V_{o}=t b d V ; R_{o}=t b d m \Omega
$$

Thermal Response

IGBT (typ.)
T1-T6
$C_{t h 1}=t b d J / K ; R_{t h 1}=t b d K / W$
$C_{t t_{2}}=t b d J / K ; R_{t{ }^{2} 2}=t b d K W$
T7
$C_{t h 1}=t b d J / K ; R_{t h 1}=t b d K / W$
$C_{t{ }_{2} 2}=t b d J / K ; R_{t h 2}=t b d K / W$
Diode (typ.)
D1-D6
$C_{t h 1}=t b d \mathrm{~J} / \mathrm{K} ; R_{t h 1}=t b d \mathrm{~K} / \mathrm{W}$
$C_{t t_{2}}=t b d J / K ; R_{t h 2}=t b d K W$
D7
$C_{t h 1}=t b d J / K ; R_{t h 1}=t b d K / W$
$C_{t{ }_{2} 2}=t b d \mathrm{~J} / K ; R_{t h 2}=t b d K W$
D11-D16
$C_{t h 1}=t b d J / K ; R_{t h 1}=t b d K / W$
$C_{t h 2}=t b d J / K ; R_{t h 2}=t b d K W$

	$\stackrel{\circ}{\circ}$
© 2006 IXYS All rights reserved	$2-4$

Brake Chopper T7

Symbol	Conditions	Maximum Ratings	
$\mathbf{V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1200	V
$\mathbf{V}_{\text {GES }}$	Continuous	± 20	V
$\mathbf{I}_{\mathrm{C} 25}$	$\mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	30	A
$\mathbf{I}_{\mathrm{CB0}}$	$\mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$	20	A
\mathbf{I}_{CM}	$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=1 \mathrm{~ms}$	40	A
$\mathbf{P}_{\text {tot }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	120	W

Brake Chopper D7			
Symbol	Conditions	Maximum Ratings	
$\mathrm{V}_{\text {RRM }}$	$\mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1200	V
$\mathrm{I}_{\mathrm{F} 25}$	$\mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	16	A
$\mathrm{I}_{\mathrm{F} 80}$	$\mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$	11	A

Symbol	Conditions	Characteristic Values min.			typ.
		max.			

Temperature Sensor NTC

Symbol	Conditions	Characteristic Values		
$\begin{aligned} & \mathbf{R}_{25} \\ & \mathbf{B}_{25 / 50} \\ & \hline \end{aligned}$	$\mathrm{T}=25^{\circ} \mathrm{C}$	4.75	$\begin{array}{r} 5.0 \\ 3375 \end{array}$	$\begin{array}{rr} 5.25 & \mathrm{k} \Omega \\ & \mathrm{~K} \end{array}$
Module				
Symbol	Conditions	Maximum Ratings		
$\begin{aligned} & \mathrm{T}_{\mathrm{v} / \mathrm{J}} \\ & \mathrm{~T}_{\mathrm{JM}} \\ & \mathrm{~T}_{\mathrm{stg}} \end{aligned}$	operating		O... +125 150 $0 \ldots+125$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {ISOL }}$	$\mathrm{I}_{\text {ISoL }} \leq 1 \mathrm{~mA} ; 50 / 60 \mathrm{~Hz}$	2500 V~		
M_{d}	Mounting torque (M5)	2.7-3.3 Nm		
Symbol	Conditions	Characteristic Values min. typ. ${ }^{\text {max. }}$		
$\mathbf{R}_{\text {pin-chip }}$			5	$\mathrm{m} \Omega$
$\begin{aligned} & d_{s} \\ & d_{A} \end{aligned}$	Creepage distance on surface Strike distance in air	$\begin{aligned} & 6 \\ & 6 \end{aligned}$		$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \\ & \hline \end{aligned}$
$\mathrm{R}_{\text {thCH }}$	with heatsink compound		0.02	KW
Weight			180	g

Dimensions in mm (1 mm = 0.0394")

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

