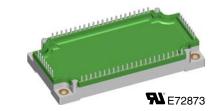


IGBT Modules


Sixpack

Short Circuit SOA Capability Square RBSOA

Preliminary data

 I_{C25} = 225 A V_{CES} = 600 V $V_{CE(sat) typ.}$ = 2.0 V

See outline drawing for pin arrangement

IGBTs			
Symbol	Conditions	Maximum Rating	js_
V _{CES}	$T_{VJ} = 25^{\circ}C$ to $150^{\circ}C$	600	V
V_{GES}		± 20	V
I _{C25}	$T_{c} = 25^{\circ}C$ $T_{c} = 80^{\circ}C$		A A
RBSOA	$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 1.5 \Omega; \text{ T}_{VJ} = 125 ^{\circ}\text{C}$ Clamped inductive load; L = 100 μH	$I_{CM} = 400$ $V_{CEK} \le V_{CES}$	A
t _{sc} (SCSOA)	$V_{CE} = V_{CES}$; $V_{GE} = \pm 15$ V; $R_{G} = 1.5 \Omega$; $T_{VJ} = 12$ non-repetitive	25°C 10 L	IS
P _{tot}	T _C = 25°C	675 \	N

Symbol	Conditions	Characteristic Values (T _{V,I} = 25°C, unless otherwise specified)				
	,	. WJ _ S G, G	min.	typ.	max.	
V _{CE(sat)}	$I_{c} = 200 \text{ A}; V_{GE} = 15 \text{ V}; T_{VJ} = 12 \text{ T}_{VJ} = 12 \text{ A}$			2.0 2.3	2.5	V
V _{GE(th)}	$I_{\rm C} = 4$ mA; $V_{\rm GE} = V_{\rm CE}$		4.5		6.5	V
I _{CES}	$V_{CE} = V_{CES}; V_{GE} = 0 \text{ V}; T_{VJ} = 25$ $T_{VJ} = 125$	°C °C		1.5	1.8	mA mA
I _{GES}	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$				400	nA
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	Inductive load, $T_{VJ} = 125^{\circ}C$ $V_{CE} = 300 \text{ V; } I_{C} = 200 \text{ A}$ $V_{GE} = \pm 15 \text{ V; } R_{G} = 1.5 \Omega$			180 50 300 40 4.6 6.3		ns ns ns ns mJ mJ
C _{ies} Q _{Gon}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MH}$ $V_{CE} = 300 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} = 20 \text{ V}$			9.0 670		nF nC
R _{thJC}	(per IGBT)				0.18	K/W

Features

€NPT IGBT technology
€low saturation voltage
€low switching losses
€switching frequency up to 30 kHz
€square RBSOA, no latch up
€high short circuit capability
€positive temperature coefficient for easy parallelling
€MOS input, voltage controlled
€ultra fast free wheeling diodes
€solderable pins for PCB mounting
€package with copper base plate

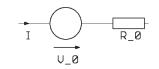
Advantages

€space savings €reduced protection circuits €package designed for wave soldering

Typical Applications

€AC motor control€AC servo and robot drives€power supplies

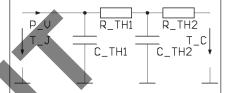
Diodes					
Symbol	Conditions	Maximum Ratings			
I _{F25}	$T_{C} = 25^{\circ}C$	260 A			
F80	$T_C = 80^{\circ}C$	165 A			


Symbol	Conditions en	Characteri n. typ.	stic Va max.	lues
V _F	$I_F = 200 \text{ A}; V_{GE} = 0 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$	1.9 1.5	2.1	V
I _{RM} t _{rr}	$ \begin{cases} I_F = 120 \text{ A; di}_F/\text{dt} = -1000 \text{ A/}\mu\text{s; T}_{VJ} = 125^{\circ}\text{C} \\ V_R = 300 \text{ V; V}_{GE} = 0 \text{ V} \end{cases} $	56 100		A ns
R _{thJC}	(per diode)		0.3	K/W

Module **Symbol Conditions Maximum Ratings** \boldsymbol{T}_{VJ} °C -40...+125 operating °С T_{JM} +150 -40...+125 $\mathbf{T}_{\mathrm{stg}}$ C VISOL 2500 $I_{ISOL} \leq 1~mA;~50/60~Hz$ M_d Mounting torque (M5) 3 -Nm

Symbol	Conditions	Characteristic Values			
		min.	typ.	max.	
R _{pin-chip}			1.8	$m\Omega$	
d _s d _A	Creepage distance on surface Strike distance in air	10 10		mm mm	
R_{thCH}	with heatsink compound		0.01	K/W	
Weight			300	g	

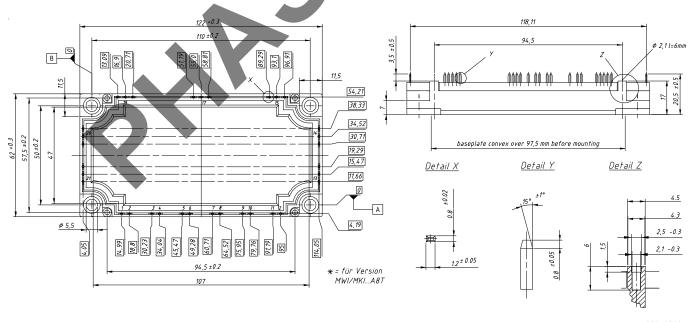
Equivalent Circuits for Simulation


Conduction

IGBT (typ. at V_{GE} = 15 V; T_J = 125°C) V_0 = 1.1 V; R_0 = 6 $m\Omega$

Free wheeling Diode (typ. at $T_J = 125$ °C) $V_0 = 1.1 \ V; \ R_0 = 2 \ m\Omega$

Thermal Response


IGBT (typ.)

 $C_{th1} = 0.397 \text{ J/K}; R_{th1} = 0.131 \text{ K/W}$ $C_{th2} = 2.243 \text{ J/K}; R_{th2} = 0.049 \text{ K/W}$

Free wheeling Diode (typ.)

 $C_{th1} = 0.281 \text{ J/K}; R_{th1} = 0.236 \text{ K/W}$ $C_{th2} = 1.945 \text{ J/K}; R_{th2} = 0.064 \text{ K/W}$

Dimensions in mm (1 mm = 0.0394")

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

M252511FV DD2	60N12K-A	DD380N16A	DD89N1600K-	$\underline{\mathbf{A}}$ $\underline{\mathbf{APT2X21D0}}$	C60J <u>APT58M</u>	80J B522F-2-Y	YEC MSTC90-1	6 25.163.0653.1
<u>25.163.2453.0</u> <u>25.</u>	163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
<u>25.330.4753.1</u> <u>25.</u>	330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	T485F T485H
T512F-YEB T513	<u>F</u> <u>T514F</u> <u>T</u>	<u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
<u>25.332.4353.1</u> <u>25.</u>	350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0								