MWI 75-06 A7
MWI 75-06 A7 T

IGBT Modules
 Sixpack

Short Circuit SOA Capability Square RBSOA

Type	NTC - Option
MWI 75-06 A7	without NTC
MWI 75-06 A7T	with NTC

$\mathrm{I}_{\text {C25 }}$	$=90 \mathrm{~A}$
$\mathrm{~V}_{\text {CES }}$	$=600 \mathrm{~V}$
$\mathrm{~V}_{\text {CE(sat) ty. }}$	$=\mathbf{2 . 1} \mathrm{V}$

See outline drawing for pin arrangement

Symbol Conditions
Characteristic Values ($T_{\mathrm{Vd}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. typ. max.

Features

- NPT IGBT technology - Iow saturation voltage
- low switching losses
- switching frequency up to 30 kHz
- square RBSOA, no latch up
- high short circuit capability
- positive temperature coefficient for easy parallelling
- MOS input, voltage controlled
- ultra fast free wheeling diodes
- solderable pins for PCB mounting
- package with copper base plate

Advantages

- space savings
- reduced protection circuits
- package designed for wave soldering

Typical Applications

- AC motor control
- AC servo and robot drives
- power supplies

MWI 75-06 A7 MWI 75-06 A7 T

Diodes							
Symbol	Conditions	Maximum Ratings					
$\mathrm{I}_{\text {F25 }}$ $\mathrm{I}_{\text {F80 }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} 140 \\ 85 \end{array}$		A A			
Symbol	Conditions	Characteristic Values					
V_{F}	$\begin{array}{r} \mathrm{I}_{\mathrm{F}}=75 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{V} J}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{V} J}=125^{\circ} \mathrm{C} \end{array}$		1.8	2.1	V		
			1.3				
$\begin{aligned} & \mathrm{I}_{\mathrm{RM}} \\ & \mathrm{t}_{\mathrm{rr}} \end{aligned}$			28	Ans			
			100				
$\mathrm{R}_{\text {thJc }}$	(per diode)			0.61 K/W			

Symbol	Conditions	Characteristic Values min. typ. ${ }^{\text {max. }}$		
R_{25}	$\mathrm{T}=25^{\circ} \mathrm{C}$	4.75	5.0	$5.25 \mathrm{k} \Omega$
$\mathrm{B}_{25 / 50}$			3375	

Module			
Symbol	Conditions	Maximum	
$\begin{array}{lr} \hline \mathbf{T}_{\text {vJ }} & -40 \ldots+ \\ \mathbf{T}_{\text {stg }} & -40 \ldots+ \\ \hline \end{array}$			
$\mathrm{V}_{\text {ISOL }}$	$\mathrm{I}_{\text {ISoL }} \leq 1 \mathrm{~mA} ; 50 / 60 \mathrm{~Hz}$	2500	$\mathrm{V} \sim$
M_{d}	Mounting torque (M5)	2.7-3.3	Nm

Symbol Conditions

		min.	typ.
$\mathbf{R}_{\text {pin-chip }}$		5	max.
$\mathbf{d}_{\mathbf{s}}$	Creepage distance on surface	6	
$\mathbf{d}_{\mathbf{A}}$	Strike distance in air	6	mm
$\mathbf{R}_{\text {thCH }}$	with heatsink compound		mm
Weight		0.02	$\mathrm{~K} / \mathrm{W}$

Equivalent Circuits for Simulation

Conduction

IGBT (typ. at $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)

$$
V_{0}=0.95 \mathrm{~V} ; R_{0}=20 \mathrm{~m} \Omega
$$

Free Wheeling Diode (typ. at $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$)

$$
V_{0}=1.014 \mathrm{~V} ; R_{0}=4 \mathrm{~m} \Omega
$$

Thermal Response

Dimensions in mm ($1 \mathrm{~mm}=\mathbf{0 . 0 3 9 4}{ }^{\text {" }) ~}$

Higher magnification on page B3-72

MWI 75-06 A7
MWI 75-06 A7 T

Fig. 1 Typ. output characteristics

Fig. 3 Typ. transfer characteristics

Fig. 5 Typ. turn on gate charge

Fig. 2 Typ. output characteristics

Fig. 4 Typ. forward characteristics of free wheeling diode

Fig. 6 Typ. turn off characteristics of free wheeling diode

Fig. 7 Typ. turn on energy and switching times versus collector current

Fig. 9 Typ. turn on energy and switching times versus gate resistor

Fig. 11 Reverse biased safe operating area RBSOA

Fig. 8 Typ. turn off energy and switching times versus collector current

Fig. 10 Typ. turn off energy and switching times versus gate resistor

Fig. 12 Typ. transient thermal impedance

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Modules category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
F3L400R07ME4_B22 F4-50R07W2H3_B51 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD400R12KE3 FD400R33KF2C-K FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF200R06YE3 FF300R12KE4_E FF450R12ME4P FF600R12IP4V FP20R06W1E3 FP50R12KT3 FP75R07N2E4_B11 FS10R12YE3 FS150R07PE4 FS150R12PT4 FS200R12KT4R FS50R07N2E4_B11 FZ1000R33HE3 FZ1800R17KF4 DD250S65K3 DF1000R17IE4 DF1000R17IE4D_B2 DF1400R12IP4D DF200R12PT4_B6 DF400R07PE4R_B6 BSM75GB120DN2_E3223c-Se F3L300R12ME4_B22 F3L75R07W2E3_B11 F4-50R12KS4_B11 F475R07W1H3B11ABOMA1 FD1400R12IP4D FD200R12PT4_B6 FD800R33KF2C-K FF1200R17KP4_B2 FF150R12ME3G FF300R17KE3_S4 FF300R17ME4_B11 FF401R17KF6C_B2 FF650R17IE4D_B2 FF900R12IP4D FF900R12IP4DV STGIF7CH60TS-L FP50R07N2E4_B11 FS100R07PE4 FS150R07N3E4_B11 FS150R17N3E4

