

Date:- 30th April, 2015

Data Sheet Issue:- 3

Phase Control Thyristor Types N1075LN180

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V_{DRM}	Repetitive peak off-state voltage, (note 1)	1800	V
V_{DSM}	Non-repetitive peak off-state voltage, (note 1)	1900	V
V_{RRM}	Repetitive peak reverse voltage, (note 1)	1800	V
V_{RSM}	Non-repetitive peak reverse voltage, (note 1)	1900	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS	
$I_{T(AV)M}$	Maximum average on-state current, T _{sink} =55°C, (n	1240	Α	
$I_{T(AV)M}$	Maximum average on-state current. T _{sink} =85°C, (n	ote 2)	880	Α
$I_{T(AV)M}$	Maximum average on-state current. T _{sink} =85°C, (n	ote 3)	535	Α
I _{T(RMS)M}	Nominal RMS on-state current, T _{sink} =25°C, (note 2	2)	2415	Α
I _{T(d.c.)}	D.C. on-state current, T _{sink} =25°C, (note 4)		2095	Α
I _{TSM}	Peak non-repetitive surge t _p =10ms, V _{rm} =60%V _{RRM}	15750	А	
I _{TSM2}	Peak non-repetitive surge t _p =10ms, V _{rm} ≤10V, (note	17500	Α	
l ² t	I^2 t capacity for fusing t_p =10ms, V_{rm} =60% V_{RRM} , (not	1.24×10 ⁶	A ² s	
l ² t	I ² t capacity for fusing t _p =10ms, V _{rm} ≤10V, (note 5)		1.53×10 ⁶	A ² s
(d:/dt)	Critical rate of rice of an atota current (note 6)	(continuous, 50Hz)	200	Λ/μο
(di/dt) _{cr}	Critical rate of rise of on-state current (note 6)	(non-repetitive)	400	A/µs
V_{RGM}	Peak reverse gate voltage		5	V
$P_{G(AV)}$	Mean forward gate power	3	W	
P_GM	Peak forward gate power	30	W	
T _{j op}	Operating temperature range	-60 to +130	°C	
T_{stg}	Storage temperature range		-60 to +130	°C

Notes:-

- 1) De-rating factor of 0.13% per °C is applicable for T_i below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Single side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, 125°C T_i initial.
- 6) $V_D=67\% V_{DRM}$, $I_{TM}=1600A$, $I_{FG}=2A$, $t_r \le 0.5 \mu s$, $T_{case}=130$ °C.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V_{TM}	Maximum peak on-state voltage	-	-	1.40	I _{TM} =1700A	V
V_{TM}	Maximum peak on-state voltage	-	-	2.02	I _{TM} =3700A	V
V_{T0}	Threshold voltage	-	-	0.85		V
r _T	Slope resistance	-	-	0.32		mΩ
(dv/dt) _{cr}	Critical rate of rise of off-state voltage	1000	-	-	V _D =67% V _{DRM} , linear ramp, gate o/c	V/μs
I _{DRM}	Peak off-state current	-	-	100	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	100	Rated V _{RRM}	mA
V_{GT}	Gate trigger voltage	-	-	2.5	T 25°C	V
I_{GT}	Gate trigger current	-	-	250	T_j =25°C V_D =10V, I_T =3A	mA
$V_{\sf GD}$	Gate non-trigger voltage	-	-	0.25	Rated V _{DRM}	V
I _H	Holding current	-	-	300	T _j =25°C	mA
t _{gd}	Gate-controlled turn-on delay time	-	-	2.0	V_D =67% V_{DRM} , I_T =800A, di/dt=10A/ μ s, I_{FG} =2A, t_i =0.5 μ s, T_i =25°C	μs
Q_{rr}	Recovered charge	-	1230	1400		μC
Q_{ra}	Recovered charge, 50% Chord	-	950	-	I _{TM} =1000A, t _p =1000μs, di/dt=10A/μs,	μC
Irr	Reverse recovery current	-	125	-	V _r =100V	Α
t _{rr}	Reverse recovery time	-	15	-		μs
	Turn-off time	-	120	230	I_{TM} =1000A, t_p =1000 μ s, di/dt=10A/ μ s, V_r =100V, V_{dr} =67% V_{DRM} , d V_{dr} /dt=20V/ μ s	μs
t _q	Turn-on time	ı	180	330	I_{TM} =1000A, t_p =1000 μ s, di/dt =10A/ μ s, V_r =100V, V_{dr} =67% V_{DRM} , dV_{dr}/dt =200V/ μ s	μs
D	Thermal registance, junction to be stainly	-	-	0.033	Double side cooled	K/W
R_{thJK}	Thermal resistance, junction to heatsink	-	-	0.066	Single side cooled	K/W
F	Mounting force	14	-	16	Note 2.	kN
W_t	Weight		280	-		g

Notes:-

- 1) Unless otherwise indicated T_j=130°C.
- 2) For other clamp forces, please consult factory.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	$V_{DSM}V_{RSM}$	$V_{D} \ V_{R}$ DC V
18	1800	1900	1350

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

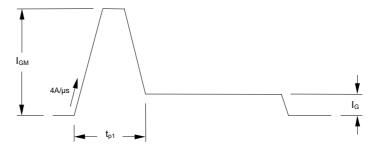
3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_i below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Snubber Components


When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

6.0 Rate of rise of on-state current

The maximum un-primed rate of rise of on-state current must not exceed 400A/µs at any time during turn-on on a non-repetitive basis. For repetitive performance, the on-state rate of rise of current must not exceed 200A/µs at any time during turn-on. Note that these values of rate of rise of current apply to the total device current including that from any local snubber network.

7.0 Gate Drive

The nominal requirement for a typical gate drive is illustrated below. An open circuit voltage of at least 30V is assumed. This gate drive must be applied when using the full di/dt capability of the device.

The magnitude of I_{GM} should be between five and ten times I_{GT} , which is shown on page 2. Its duration (t_{p1}) should be 20µs or sufficient to allow the anode current to reach ten times I_L , whichever is greater. Otherwise, an increase in pulse current could be needed to supply the necessary charge to trigger. The 'back-porch' current I_G should remain flowing for the same duration as the anode current and have a magnitude in the order of 1.5 times I_{GT} .

8.0 Computer Modelling Parameters

8.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{{V_{T0}}^2 + 4 \cdot f\!f^2 \cdot r_T \cdot W_{AV}}}{2 \cdot f\!f^2 \cdot r_T} \qquad \text{and:} \qquad W_{AV} = \frac{\Delta T}{R_{th}} \\ \Delta T = T_{j\,\text{max}} - T_K$$

Where $V_{T0}=0.85V$, $r_{T}=0.32m\Omega$,

 $R_{\it th}$ = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

Supplementary Thermal Impedance							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave Double Side Cooled	0.0421	0.0399	0.0383	0.0371	0.0355	0.0339	0.0330
Square wave Anode Side Cooled	0.0746	0.0720	0.0706	0.0696	0.0683	0.0671	0.0660
Sine wave Double Side Cooled	0.0401	0.0377	0.0363	0.0353	0.0331		
Sine wave Anode Side Cooled	0.0718	0.0695	0.0685	0.0678	0.0664		

		Form F	actors				
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.46	2.45	2	1.73	1.41	1.15	1
Sine wave	3.98	2.78	2.22	1.88	1.57		

8.2 Calculating V_T using ABCD Coefficients

The on-state characteristic I_T vs. V_T, on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

$$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

	25°C Coefficients	130°C Coefficients		
Α	0.9375198	Α	0.6251105	
В	0.02528723	В	0.03458985	
С	2.256656×10 ⁻⁴	С	2.864584×10 ⁻⁴	
D	6.086932×10 ⁻⁴	D	7.596821×10 ⁻⁴	

8.3 D.C. Thermal Impedance Calculation

$$r_{t} = \sum_{p=1}^{p=n} r_{p} \cdot \left(1 - e^{\frac{-t}{\tau_{p}}}\right)$$

Where p = 1 to n, n is the number of terms in the series and:

t = Duration of heating pulse in seconds.

 r_{t} = Thermal resistance at time t.

 r_p = Amplitude of p_{th} term.

 τ_p = Time Constant of r_{th} term.

The coefficients for this device are shown in the tables below:

D.C. Double Side Cooled, junction to heatsink						
Term	Term 1 2 3 4					
r_p	0.01927478	9.908339×10 ⁻³	2.009716×10 ⁻³	1.605723×10 ⁻³		
$ au_{p}$	0.8125066	0.07719755	0.02563659	2.774668×10 ⁻³		

D.C. Single Side Cooled, junction to heatsink						
Term	Term 1 2 3 4 5					
r_p	0.04712205	4.476528×10 ⁻³	8.975167×10 ⁻³	4.849501×10 ⁻³	7.67798×10 ⁻⁴	
$ au_{\mathcal{P}}$	4.069636	0.5902552	0.09712090	0.02892249	1.401586×10 ⁻³	

9.0 Reverse recovery ratings

(i) Q_{ra} is based on 50% I_{rm} chord as shown in Diagram

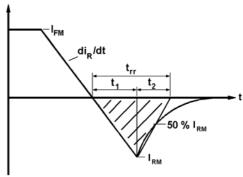


Diagram 1

(ii) Q_{rr} is based on a 150μs integration time i.e.

$$Q_{rr} = \int_{0}^{150 \,\mu s} i_{rr}.dt$$

(iii)
$$K\ Factor = \frac{t_1}{t_2}$$

Curves

Figure 1 – On-state characteristics of Limit device

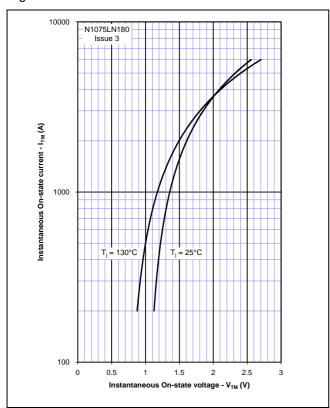


Figure 2 – Transient thermal impedance junction to heatsink

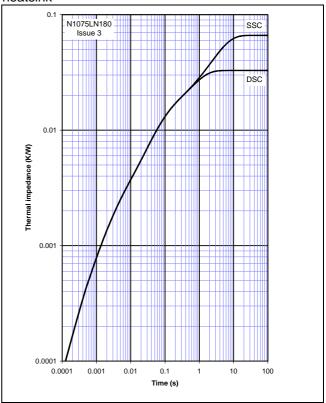


Figure 3 - Gate Characteristics - Trigger limits

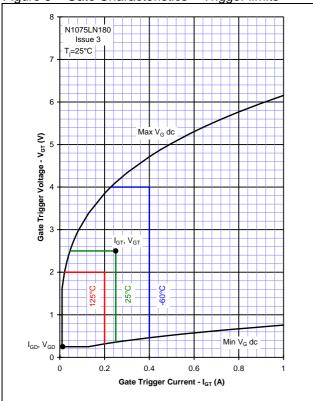
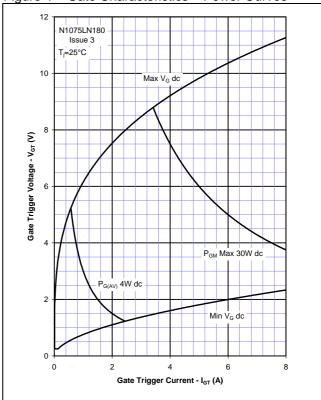
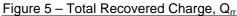




Figure 4 – Gate Characteristics – Power Curves

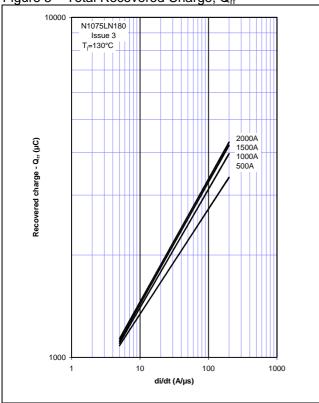


Figure 6 – Recovered Charge, Q_{ra} (50% chord)

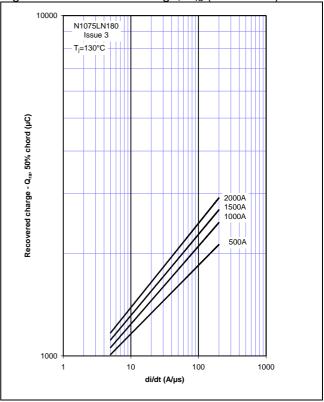


Figure 7 – Peak Reverse Recovery Current, I_{rm}

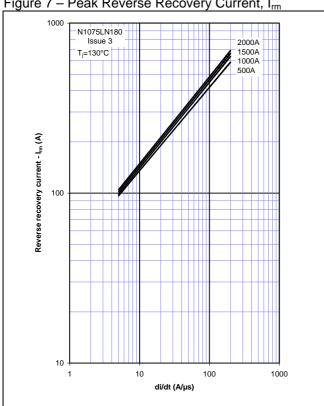


Figure 8 – Maximum Recovery Time, t_{rr} (50% chord)

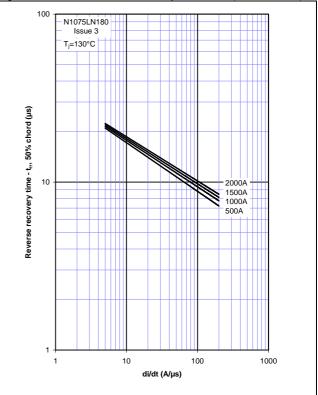


Figure 9 – On-state current vs. Power dissipation – Double Side Cooled (Sine wave)

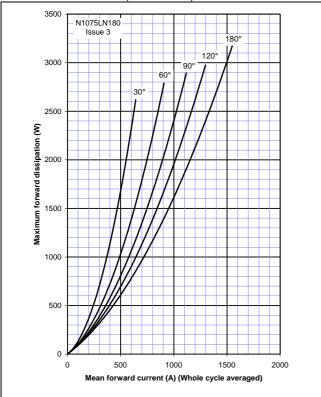


Figure 11 – On-state current vs. Power dissipation – Double Side Cooled (Square wave)

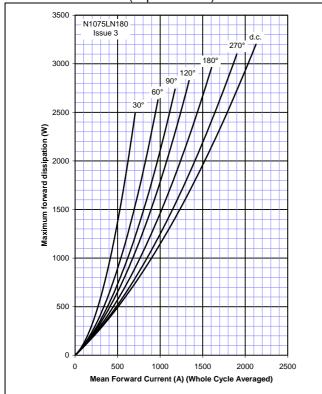


Figure 10 – On-state current vs. Case temperature – Double Side Cooled (Sine wave)

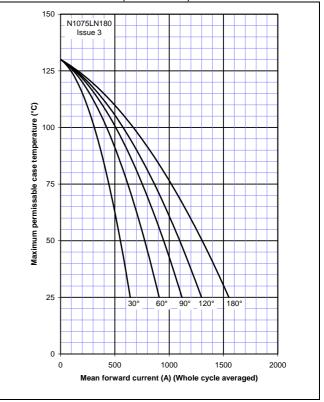


Figure 12 – On-state current vs. Case temperature – Double Side Cooled (Square wave)

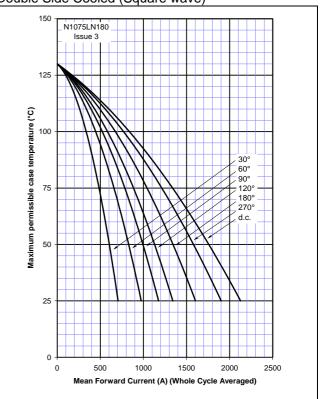


Figure 13 – On-state current vs. Power dissipation – Single Side Cooled (Sine wave)

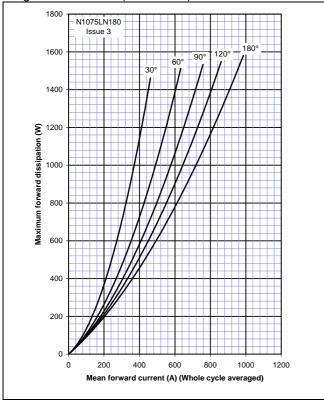


Figure 15 – On-state current vs. Power dissipation – Single Side Cooled (Square wave)

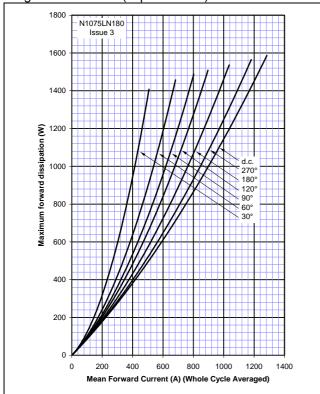


Figure 14 – On-state current vs. Case temperature – Single Side Cooled (Sine wave)

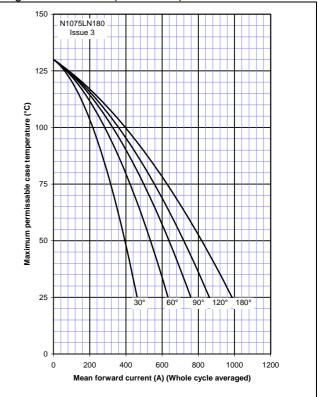
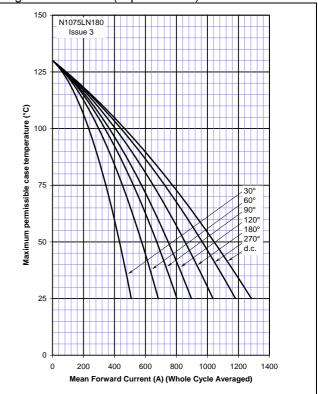
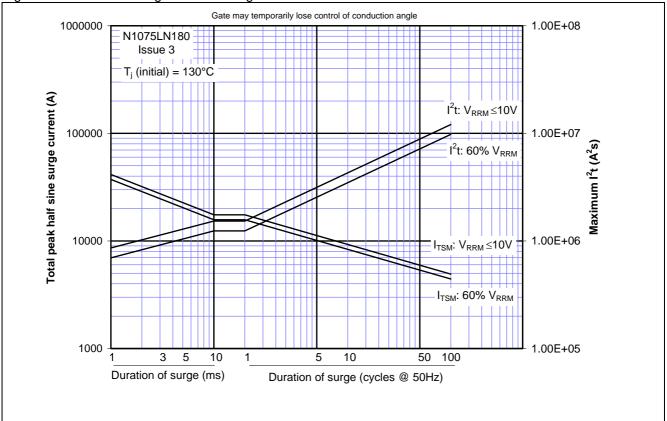


Figure 16 – On-state current vs. Case temperature – Single Side Cooled (Square wave)

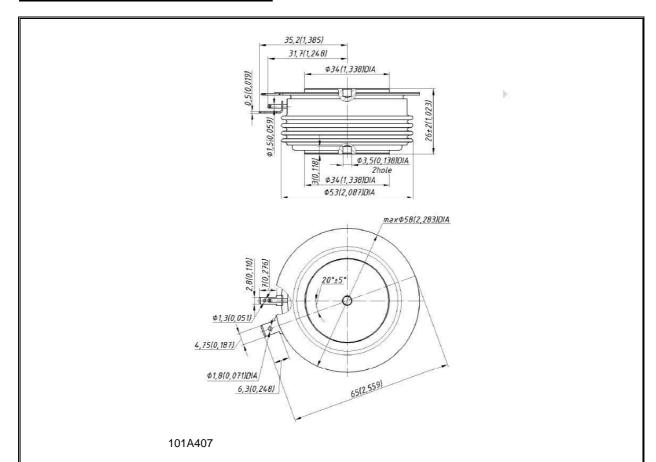


Figure 17 – Maximum surge and I²t Ratings

Outline Drawing & Ordering Information

ORDERI	NG INFORMATION	(Please quote 10 digit code as below)		
N1075	LN	18	0	
Fixed Type Code	Fixed outline code	Voltage code V _{DRM} /100 18	Fixed turn-off time code	

Order code: N1075LN180 – 1800V V_{DRM} , V_{RRM} , 26mm clamp height capsule.

IXYS Semiconductor GmbH

Edisonstraße 15 D-68623 Lampertheim Tel: +49 6206 503-0 Fax: +49 6206 503-627

E-mail: marcom@ixys.de

IXYS UK Westcode Ltd

Langley Park Way, Langley Park, Chippenham, Wiltshire, SN15 1GE. Tel: +44 (0)1249 444524 Fax: +44 (0)1249 659448

E-mail: sales@ixysuk.com

IXYS Corporation

1590 Buckeye Drive Milpitas CA 95035-7418 Tel: +1 (408) 457 9000 Fax: +1 (408) 496 0670

E-mail: sales@ixys.net

www.ixysuk.com

www.ixys.com

IXYS Long Beach

IXYS Long Beach, Inc 2500 Mira Mar Ave, Long Beach CA 90815

Tel: +1 (562) 296 6584 Fax: +1 (562) 296 6585

E-mail: service@ixyslongbeach.com

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors IXYS UK Westcode Ltd.

In the interest of product improvement, IXYS UK Westcode Ltd reserves the right to change specifications at any time without

prior notice.

Devices with a suffix code (2-letter, 3-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.

© IXYS UK Westcode Ltd.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

NTE5428 T1500N16TOF VT TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-22RIA20 VS-2N685 057219R T1190N16TOF VT T1220N22TOF VT T201N70TOH T700N22TOF T830N18TOF TT250N12KOF-K VS-16RIA120 VS-110RKI40 NTE5427 NTE5442 TT251N16KOF-K VS-22RIA100 VS-16RIA40 TD250N16KOF-A VS-ST110S16P0 T930N36TOF VT T2160N24TOF VT T1190N18TOF VT T1590N28TOF VT 2N1776A T590N14TOF NTE5375 NTE5460 NTE5481 NTE5512 NTE5514 NTE5518 NTE5519 NTE5529 NTE5553 NTE5557 NTE5557 NTE5567 NTE5570 NTE5572 NTE5574 NTE5576 NTE5578 NTE5579 NTE5589 NTE5598