Parameter	Rating	Units
AC Operating Voltage	120	$\mathrm{~V}_{\text {rss }}$
Load Current	1	$\mathrm{~A}_{\text {rss }}$
On-State Voltage Drop $\left(I_{\mathrm{L}}=1 \mathrm{~A}_{\text {rms }}\right)$	1.2	$\mathrm{~V}_{\text {rms }}$

Features

- Load Current up to $1 \mathrm{~A}_{\text {rms }}$
- Blocking Voltages up to $400 \mathrm{~V}_{\mathrm{P}}$
- $3750 V_{\text {rms }}$ Input to Output Isolation
- 5mA Sensitivity
- Zero-Crossing Detection
- DC Control, AC Output
- Optically Isolated
- TTL and CMOS Compatible
- Low EMI and RFI Generation
- High Noise Immunity
- VDE compatible
- Machine Insertable, Wave Solderable

Applications

- Programmable Control
- Process Control
- Power Control Panels
- Remote Switching
- Gas Pump Electronics
- Contactors
- Large Relays
- Solenoids
- Motors
- Heaters

Description

The PD1201 is an AC Solid State Switch using optical coupling with dual power SCR outputs to produce an alternative to optocoupler and Triac circuits. The PD1201 switches are robust enough to provide a blocking voltage of up to $400 \mathrm{~V}_{\mathrm{p}}$ and max surge current rating of 20A. In addition, tightly controlled zero-cross circuitry ensures switching of AC loads without the generation of transients. The input and output circuits are optically coupled to provide $3750 \mathrm{~V}_{\text {rms }}$ of isolation and noise immunity between control and load circuits. As a result the PD1201 is well suited for industrial environments where electromagnetic interference would disrupt the operation of electromechanical relays.

Approvals

- UL Recognized Component: UL 508 File E69938
- CSA Certified Component: File 043639

Ordering Information

Part \#	Description
PD1201	4-Pin (16-Pin Body) DIP Package (25/Tube)

Pin Configuration

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Min	Max	Units
Blocking Voltage	-	400	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	-	5	V
Input Control Current	-	100	mA
Peak (10ms)	-	1	A
Input Power Dissipation ${ }^{1}$	-	150	mW
Total Package Dissipation ${ }^{2}$	-	1600	mW
Isolation Voltage, Input to Output	3750	-	$\mathrm{V}_{\text {res }}$
Operational Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40	+125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
${ }^{2}$ Derate linearly $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics						
AC Operating Voltage	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	$\mathrm{V}_{\text {OP }}$	20	-	120	$\mathrm{V}_{\text {rms }}$
Load Current (Continuous)	$\mathrm{V}_{\mathrm{L}}=120-240 \mathrm{VAC}$	I_{L}	0.005	-	1	$\mathrm{A}_{\text {rms }}$
Maximum Surge Current	$\mathrm{t} \leq 16 \mathrm{~ms}$	$I_{\text {PEAK }}$	-	-	20	A
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=400 \mathrm{~V}_{\text {DC }}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	mA
On-State Voltage Drop	$\mathrm{L}_{\mathrm{L}}=1.0 \mathrm{~A}_{\text {rms }}$	-	-	-	1.2	$\mathrm{V}_{\text {rms }}$
Critical Rate of Rise	-	dV/dt	1000	1200	-	V/ $/ \mathrm{s}$
Switching Speeds Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	$\mathrm{t}_{\text {on }}$	-	-	0.5	Cycles
Turn-Off		$\mathrm{t}_{\text {off }}$	-	-	0.5	
Zero-Cross Turn-On Voltage ${ }^{1}$	$1^{\text {st }}$ half-cycle	off	-	2	5	V
	Subsequent half-cycle		-	-	1	V
Operating Frequency	-	-	20	-	500	Hz
Load Power Factor for Guaranteed Turn-On ${ }^{2}$	-	PF	0.25	-	-	-
Capacitance Input-To-Output	-	C_{10}	-	3	-	pF
Input Characteristics						
Input Control Current For Normal Environment For High Noise Environment		$I_{\text {F }}$				mA
	-		-	-	5	
	-		-	-	10	
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Input Dropout Voltage	-	-	0.8	-	-	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	-	-	10	$\mu \mathrm{A}$

[^0]
PERFORMANCE DATA @ $25^{\circ} \mathrm{C}$ (Unless Otherwise Noted) *

Manufacturing Information

Moisture Sensitivity

(8)
All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Rating
PD1201	MSL 1

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

Device	Maximum Temperature x Time
PD1201	$245^{\circ} \mathrm{C}$ for 30 seconds

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.
(e3)

Mechanical Dimensions

PD1201

PCB Hole Pattern

Dimensions
mm
(inches)

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Triac \& SCR Output Optocouplers category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
IL4218-X019 MOC3063S-TA ILD207-X001T ILD615-1X007T VO2223-X001 VO4254H WPPCT-N1066A WPPCT-N1566A WPPCTZ546D 523170E WPPCT-Z546A WPPCT-Z1046D WPPCT-Z1046A WPPCT-N566D WPPCT-N566A WPPCT-N1566D FODM3053V_NF098 VO4258D VO4256D VOM160R-X001T VO4158H-X017T TLP3083(TP1,F VOM160P-X001T IL4116-X007 MOC3020XSM MOC3021X MOC3021XSM MOC3022X MOC3023SR2M MOC3041SM MOC3042XSM MOC3043SR2M MOC3043X MOC3043XSM MOC3052SM MOC3060XSM MOC3063X IS620XSM IS623X VO3062-X007T VO3063-X006 MOC3020 MOC3020X MOC3022 MOC3022XSM MOC3023X MOC3023XSM MOC3041X MOC3041XSM MOC3042SM

[^0]: Zero Cross $1^{\text {st }}$ half-cycle @ < 100Hz.
 2 Snubber circuits may be required at low power factors.

[^1]: Specification: DS-PD1201-R14
 ©Copyright 2013, IXYS Integrated Circuits Division

