PLA172P 800V, 100mA Single-Pole

Normally Open Relay

Parameter	Rating	Units
Blocking Voltage	800	$\mathrm{~V}_{\mathrm{P}}$
Load Current	100	$\mathrm{~mA}_{\text {rms }}$
	85	$\mathrm{~mA}_{\mathrm{DC}}$
On-Resistance (max)	50	Ω
Input Control Current	2	mA

Features

- Guaranteed Specifications at $105^{\circ} \mathrm{C}$
- $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Operational Temperature Range
- 5 mA Input Control Current Over Operating Temperature Range
- $800 \mathrm{~V}_{\mathrm{p}}$ Blocking Voltage
- 6.8 mm Pad-to-Pad Separation of Output Pins
- $5000 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- Small Surface Mount Package
- No EMI/RFI Generation
- Flammability Rating UL 94 V-0

Applications

- Industrial Controls
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation

Description

IXYS Integrated Circuits' PLA172P is a single-pole, normally-open (1-Form-A) Solid State Relay, rated for operation up to $105^{\circ} \mathrm{C}$, that uses optically coupled MOSFET technology to provide an enhanced input to output isolation of $5000 \mathrm{~V}_{\text {rms }}$.
The unique device pinout provides more than 6.8 mm of pad-to-pad separation between the high voltage output pins.

Control of the optically coupled output is by the input infrared LED. The PLA172P is designed to replace electromechanical relays, and provides bounce-free switching in a compact, surface-mount package.

Approvals

- UL Recognized Component: File \# E76270
- TUV EN 62368-1: Certificate \# B 0826670008

Ordering Information

Part \#	Description
PLA172P	6-Pin (8-Pin Body) Flatpack (50/Tube)
PLA172PTR	6-Pin (8-Pin Body) Flatpack, Tape \& Reel (1000/Reel)

Pin Configuration

Switching Characteristics of Normally-Open Devices

Absolute Maximum Ratings
(@ $25^{\circ} \mathrm{C}$ Unless otherwise noted)

Parameter	Ratings	Units
Blocking Voltage $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$	800	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current Peak (10ms)	50	mA
Input Power Dissipation ${ }^{1}$	1	A
Output Power Dissipation AC Load Current ${ }^{2}$ DC Load Current 3	150	mW
Isolation Voltage, Input to Output (60 Seconds)	890	mW
	667	
$\mathrm{~V}_{\text {rms }}$		
Operational Temperature, Ambient	-40 to +105	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
${ }^{2}$ Derate output power linearly $8.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
3^{3} Derate output power linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at the specified temperatures and are the result of engineering evaluations. They are provided for information purposes only and are not part of the manufacturing testing requirements.

Electrical Characteristics

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics @ 25						
Blocking Voltage	$\mathrm{I}_{\mathrm{L}}=1 \mu \mathrm{~A}$	$\mathrm{V}_{\text {DRM }}$	800	-	-	V_{P}
Load Current Continuous, AC ${ }^{1}$ Continuous, DC ${ }^{2}$ Peak	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$	I_{L}	-	-	100	$m A_{\text {rms }}$
			-	-	85	$m A_{D C}$
	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{t}=10 \mathrm{~ms}$	ILPK	-	-	± 350	$m A_{p}$
On-Resistance ${ }^{3}$	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	R_{ON}	-	37	50	Ω
	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$		-	57	85	
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=800 \mathrm{~V}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds Turn-On Turn-Off	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	$\mathrm{t}_{\text {on }}$	-	1.2	5	ms
		$\mathrm{t}_{\text {off }}$	-	0.5	5	
Output Capacitance	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=20 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	10	-	pF
Output Characteristics @ $105^{\circ} \mathrm{C}$						
On-Resistance ${ }^{3}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=30 \mathrm{~mA}$	R_{ON}	-	70	110	Ω
	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$		-	110	140	
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=800 \mathrm{~V}$	$\mathrm{I}_{\text {LEAK }}$	-	-	5	$\mu \mathrm{A}$
Switching Speeds Turn-On Turn-Off	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=30 \mathrm{~mA}$	$t_{\text {on }}$	-	-	10	ms
		$\mathrm{t}_{\text {off }}$	-	-	10	
Input Characteristics @ 25 ${ }^{\circ} \mathrm{C}$						
Input Control Current to Activate ${ }^{4}$	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	I_{F}	-	0.35	2	mA
Input Control Current to Deactivate	-	I_{F}	0.05	-	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.36	1.5	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$I_{\text {R }}$	-	-	10	$\mu \mathrm{A}$
Input Characteristics @ $105^{\circ} \mathrm{C}$						
Input Control Current to Activate	$\mathrm{I}_{\mathrm{L}}=30 \mathrm{~mA}$	I_{F}	-	-	5	mA
Common Characteristics @ $25{ }^{\circ} \mathrm{C}$						
Input to Output Capacitance	$\mathrm{V}_{10}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{10}	-	1	-	pF

[^0]
PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at $25^{\circ} \mathrm{C}$.

PERFORMANCE DATA*

Manufacturing Information

Moisture Sensitivity

(2)
All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Classification
PLA172P	MSL 1

ESD Sensitivity
This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Soldering Profile

Provided in the table below is the IPC/JEDEC J-STD-020 Classification Temperature (T_{C}) and the maximum total dwell time (t_{p}) in all reflow processes that the body temperature of these surface mount devices may be $\left(\mathrm{T}_{\mathrm{C}}-5\right)^{\circ} \mathrm{C}$ or greater. The device's body temperature must not exceed the Classification Temperature at any time during reflow soldering processes.

Device	Classification Temperature $\left(T_{\mathrm{c}}\right)$	Dwell Time $\left(\mathrm{t}_{\mathrm{p}}\right)$	Max Reflow Cycles
PLA172P	$250^{\circ} \mathrm{C}$	30 seconds	3

Board Wash

IXYS Integrated Circuits recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to halide flux or solvents.

Mechanical Dimensions

PLA172P Package

PLA172PTR Tape \& Reel

For additional information please visit our website at: https://www.ixysic.com

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.
Read complete Disclaimer Notice at https://www.littelfuse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQH3213J AQV212J AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV212SXJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S LBB110S LCA110LSTR LCB126S WPPM-0626D WPPM-3526D

[^0]: ${ }^{1}$ Load derates linearly from $100 \mathrm{~mA} @ 25^{\circ} \mathrm{C}$ to $44 \mathrm{~mA} @ 105^{\circ} \mathrm{C}\left(0.7 \mathrm{~mA}{ }^{\circ} \mathrm{C}\right)$.
 ${ }^{2}$ Load derates linearly from 85 mA @ $25^{\circ} \mathrm{C}$ to 38 mA @ $105^{\circ} \mathrm{C}\left(0.59 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\right)$.
 ${ }^{3}$ Measurement taken within 1 second of on-time.
 ${ }^{4}$ For applications requiring high temperature operation (greater than $60^{\circ} \mathrm{C}$) a minimum LED drive current of 5 mA is recommended

