PM1205 AC Power Switch

Parameter	Rating	Units
AC Operating Voltage	240	$\mathrm{~V}_{\text {rss }}$
Load Current	500	$\mathrm{~mA}_{\text {rms }}$
$\left.\begin{array}{c}\text { On-State Voltage Drop } \\ \left(\mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA}\right. \\ \text { rms }\end{array}\right)$	1.4	$\mathrm{~V}_{\text {rms }}$

Features

- Load Current up to $0.5 \mathrm{~A}_{\text {rms }}$
- Blocking Voltages up to $500 \mathrm{~V}_{\mathrm{P}}$
- 5mA Sensitivity
- Zero-Crossing Detection
- DC Control, AC Output
- Optically Isolated
- TTL and CMOS Compatible
- Low EMI and RFI Generation
- High Noise Immunity
- VDE compatible
- Machine Insertable, Wave Solderable

Applications

- Programmable Control
- Process Control
- Power Control Panels
- Remote Switching
- Gas Pump Electronics
- Contactors
- Large Relays
- Solenoids
- Motors
- Heaters

Description

The PM1205 is an AC Solid State Switch using optical coupling with dual power SCR outputs to produce an alternative to optocoupler and Triac circuits. The PM1205 switches are robust enough to provide a blocking voltage of up to $500 \mathrm{~V}_{\mathrm{P}}$ In addition, tightly controlled zero-cross circuitry ensures switching of AC loads without the generation of transients. The input and output circuits are optically coupled to provide $3750 \mathrm{~V}_{\text {rms }}$ of isolation and noise immunity between control and load circuits. As a result, the PM1205 is well suited for industrial environments where electromagnetic interference could disrupt the operation of electromechanical relays.

Approvals

- UL Recognized Component: UL 508 File E69938
- CSA Certified Component: File 043639

Ordering Information

Part \#	Description
PM1205	6-Lead DIP (50/Tube)
PM1205S	6-Lead Surface Mount (50/Tube)
PM1205STR	6-Lead Surface Mount (1000/Reel)

Pin Configuration

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Min	Max	Units
Blocking Voltage	-	500	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	-	5	V
Input Control Current Peak (10ms)	-	100	mA
	-	1	A
Input Power Dissipation ${ }^{1}$	-	150	mW
Total Package Dissipation ${ }^{2}$	-	800	mW
Isolation Voltage, Input to Output	3750	-	$\mathrm{V}_{\text {rs }}$
Operational Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40	+125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
2^{2} Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics						
AC Operating Voltage	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	$\mathrm{V}_{\text {OP }}$	20	-	240	$\mathrm{V}_{\text {rms }}$
Load Current (Continuous)	$\mathrm{V}_{\mathrm{L}}=120-240 \mathrm{VAC}$	I_{L}	0.005	-	0.5	$\mathrm{A}_{\text {rms }}$
Maximum Surge Current	$\mathrm{t} \leq 16 \mathrm{~ms}$	$\mathrm{I}_{\text {PEAK }}$	-	-	12	A
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=500 \mathrm{~V}_{\text {DC }}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	mA
On-State Voltage Drop	$\mathrm{L}_{\mathrm{L}}=0.5 \mathrm{~A}_{\text {rms }}$	-	-	-	1.4	$\mathrm{V}_{\text {rms }}$
Critical Rate of Rise	-	dV/dt	1000	1200	-	V/ $/ \mathrm{s}$
Switching Speeds Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	$\mathrm{t}_{\text {on }}$	-	-	0.5	Cycles
Turn-Off		$\mathrm{t}_{\text {off }}$	-	-	0.5	
Zero-Cross Turn-On Voltage ${ }^{1}$	$1^{\text {st }}$ half-cycle	off	-	2	5	V
	Subsequent half-cycle		-	-	1	V
Operating Frequency	-	-	20	-	500	Hz
Load Power Factor for Guaranteed Turn-On ${ }^{2}$	-	PF	0.25	-	-	-
Capacitance Input-To-Output	-	C_{10}	-	3	-	pF
Input Characteristics						
Input Control Current For Normal Environment For High Noise Environment		$I_{\text {F }}$				mA
	-		-	-	5	
	-		-	-	10	
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Input Dropout Voltage	-	-	0.8	-	-	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	-	-	10	$\mu \mathrm{A}$

[^0]Integrated Circuits Division

PERFORMANCE DATA*

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Manufacturing Information

Moisture Sensitivity

1
All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) rating as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Rating
PM1205	MSL 1

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Reflow Profile

This product has a maximum body temperature and time rating as shown below. All other guidelines of J-STD-020 must be observed.

Device	Maximum Temperature x Time
PM1205	$250^{\circ} \mathrm{C}$ for 30 seconds

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable. Since IXYS Integrated Circuits Division employs the use of silicone coating as an optical waveguide in many of its optically isolated products, the use of a short drying bake could be necessary if a wash is used after solder reflow processes. Chlorine- or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.

Mechanical Dimensions

PM1205

PM1205S

PM1205STR Tape \& Reel

For additional information please visit our website at: www.ixysic.com
IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

[^1]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Triac \& SCR Output Optocouplers category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
IL4208-X009 IL4218-X019 MOC3063S-TA IL4108-X017 IL410-X019T ILD207-X001T ILD615-1X007T VO2223-X001 VO3063-X017T VO4254H WPPCT-N1066A WPPCT-N1566A WPPCT-Z546D 523170E VO4258M-X007T VO4256H-X007T VO4254M VO3063-X016 VO3062-X017T WPPCT-Z546A WPPCT-Z1046D WPPCT-Z1046A WPPCT-N566D WPPCT-N566A WPPCT-N1566D IL4108-X009T FODM3053V_NF098 VO4258D VO4256D VO4257M VO4156D-X007T VO4154D-X007T VOM160R-X001T TLP3082(S,C,F) VO4156H-X006 VO4158H-X017T IL4116-X009T IL4208-X017T TLP3083(TP1,F MOC3071SM tlp548j MOC3063STA1-V TLP267J(TPL,E IL4218-X017 SFH690C-X001T IL410-X017 IL410-X001 VOM160P-X001T IL4116-X007 IL4117-X007

[^0]: Zero Cross $1^{\text {st }}$ half-cycle @ < 100Hz.
 2 Snubber circuits may be required at low power factors.

[^1]: Specification: DS-PM1205-R10
 ©Copyright 2013, IXYS Integrated Circuits Division All rights reserved. Printed in USA.
 10/21/2013

