

High Voltage Rectifiers

 $V_{RRM} = 3200 V$ $I_{F(AV)M} = 22.9 A$

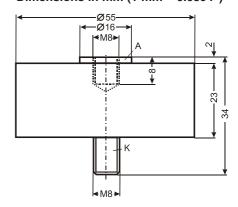
V _{RRM}	Standard Types	Power Designation	
3200	UGE 0421 AY4	Si-E 1125 / 500-6	

Symbol Conditions	Ratings	
$I_{\text{F(RMS)}}$ $I_{\text{F(AV)M}}$ air self cooling, $I_{\text{amb}} = 45^{\circ}\text{C}$	40	А
without cooling platewith colling plate	7.4 10.9	A A
forced air cooling: $v = 3 \text{ m/s},$ $T_{amb} = 35^{\circ}\text{C}$ - without cooling plate	14.2	А
- with cooling plate	18.8	Α
oil cooling, $T_{amb} = 35^{\circ}C$ - without cooling plate - with cooling plate	19.7 22.9	A A
T_{RSM} $T_{(vj)} = 150^{\circ}\text{C};$ $t_p = 10 \mu\text{s}$	7	kW
non repetitive, 50 c/s (for 60 c/s add 10%) $T_{(vj)} = 45^{\circ}\text{C}; \qquad t_p = 10 \text{ ms}$	300	Α
$T_{(vj)} = 150$ °C; $t_p = 10 \text{ ms}$	250	А
T_{amb} T_{stg} $T_{(v)}$	-40+150 -40+150 150	°C °C °C
Weight	115	g

Symbol	Conditions		Characteristic	Values
I _R	$T_{(vj)} = 150^{\circ}C;$	$V_R = V_{RRM}$	≤ 2	mA
V _F	$I_F = 55 \text{ A}$ $T_{(vj)} = 25^{\circ}\text{C}$		2.72	V
V _{to}	$T_{(vj)} = 150^{\circ}C$ $T_{(vj)} = 150^{\circ}C$		1.7 16	V mΩ
а	f = 50Hz		5 x 9,81	m/s ²
M _d			8	Nm

Features

- · Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics


Applications

- X-Ray equipment
- · Electrostatic dust precipitators
- · Electronic beam welding
- Lasers
- · Cable test equipment

Advantages

- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

Data according to IEC 60747-2

IXYS reserve the right to change limits, test conditions and dimensions.

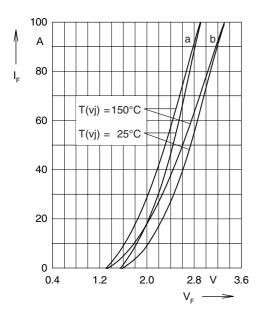


Fig. 1: Forward characteristics

Instantaneous forward current I $_{\rm F}$ as a function of instantaneous forward voltage drop V $_{\rm F}$ for junction temperature T $_{\rm (vj)}$ = 25°C and T $_{\rm (vj)}$ = 150°C a = Mean value characteristic

b = Limit value characteristic

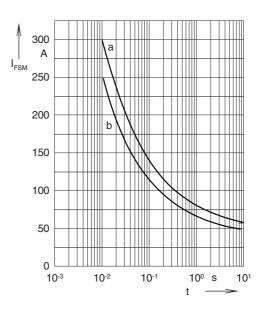


Fig. 2: Characteristics of maximum permissible current

The curves show the non repetitive peak one cycle surge forward current $I_{\rm FSM}$ as a function of time t and serve for rating protective devices.

 $\begin{array}{ll} a = Initial \ state \\ b = Initial \ state \end{array} \qquad \begin{array}{ll} T_{(vj)} = \ 45^{\circ}C \\ T_{(vj)} = \ 150^{\circ}C \end{array}$

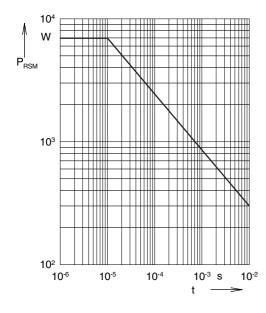


Fig. 3: Power loss Non repetitive peak reverse power loss P_{RSM} as a function of time t, $T_{(v)} = 150 ^{\circ} \text{C}$

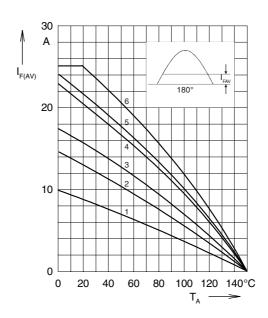


Fig. 4: Load diagramm

Mean forward current $I_{F(AV)}$ of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling modes

1 = air self cooling
2 = air self cooling
3 = forced air cooling
4 = forced air cooling
5 = oil cooling
6 = oil cooling
without cooling plate
with cooling plate
with cooling plate
with cooling plate
without cooling plate
cooling plate
with cooling plate

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G ACGRA4007-HF ACGRB207-HF
CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077 85HFR60 40HFR60
VS-88-7272PBF 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K VS12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162 NTE5850