High Voltage Rectifiers

$\mathrm{V}_{\text {RRM }}$ V	Standard Types	Power Designation
24000	UGE 3126 AY4	Si-E 9000 / 4000-0.7

Ratings

Symbol	Conditions		Ratings	
$\mathrm{I}_{\text {F(RMS) }}$ $\mathrm{I}_{\mathrm{F}(\mathrm{AV}) \mathrm{M}}$	air self cooling,		5	A
		$\mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C}$	0.8	A
		- with colling plate	1.0	A
	forced air cooling:			
	$\mathrm{v}=3 \mathrm{~m} / \mathrm{s}$,	$\mathrm{T}_{\text {amb }}=35^{\circ} \mathrm{C}$		
		- without cooling plate	1.4	A
		- with cooling plate	1.7	A
	oil cooling,	$\mathrm{T}_{\mathrm{amb}}=35^{\circ} \mathrm{C}$	2.0	A
		- with cooling plate	2.0	A
$\mathrm{P}_{\text {RSM }}$	$\mathrm{T}_{\text {(vi) }}=150^{\circ} \mathrm{C}$;	$\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	1.6	kW
$\mathrm{I}_{\text {FSM }}$	non repetitive, $50 \mathrm{c} / \mathrm{s}$ (for $60 \mathrm{c} / \mathrm{s}$ add 10\%)			
	$\mathrm{T}_{(\mathrm{vj})}=45^{\circ} \mathrm{C}$;	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	70	A
	$\mathrm{T}_{\text {(vi) }}=150^{\circ} \mathrm{C}$;	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	60	A
$\mathrm{T}_{\text {amb }}$			-40...+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$			-40...+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {(vi) }}$			150	${ }^{\circ} \mathrm{C}$
Weight			127	g

Symbol	Conditions		Characteristic Values	
\mathbf{I}_{R}	$\mathrm{T}_{(\mathrm{vj)}}=150^{\circ} \mathrm{C} ;$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	≤ 1	mA
\mathbf{V}_{F}	$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~A}$		18	V
	$\mathrm{~T}_{(\mathrm{vi)}}=25^{\circ} \mathrm{C}$			
\mathbf{V}_{TO}	$\mathrm{T}_{(\mathrm{vi)}}=150^{\circ} \mathrm{C}$	12	V	
\mathbf{r}_{T}	$\mathrm{T}_{(\mathrm{vj)}}=150^{\circ} \mathrm{C}$		1.8	Ω
\mathbf{a}	$\mathrm{f}=50 \mathrm{~Hz}$		$5 \times 9,81$	$\mathrm{~m} / \mathrm{s}^{2}$
\mathbf{M}_{d}			8	Nm

$I_{F(A V) M}=2.0 \mathrm{~A}$

Features

- Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics

Applications

- X-Ray equipment
- Electrostatic dust precipitators
- Electronic beam welding
- Lasers
- Cable test equipment

Advantages

- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- Series and parallel operation

Dimensions in mm ($1 \mathrm{~mm}=0.0394^{\prime \prime}$)

Data according to IEC 60747-2
IXYS reserve the right to change limits, test conditions and dimensions.

Fig. 1: Forward characteristics
Instantaneous forward current I_{F} as a function of instantaneous forward voltage drop V_{F} for junction temperature $\mathrm{T}_{(\mathrm{vj})}=25^{\circ} \mathrm{C}$ and $\mathrm{T}_{(\mathrm{vj)}}=150^{\circ} \mathrm{C}$ $\mathrm{a}=$ Mean value characteristic
$b=$ Limit value characteristic

Fig. 2: Characteristics of maximum permissible current The curves show the non repetitive peak one cycle surge forward current $I_{\text {FSM }}$ as a function of time t and serve for rating protective devices.
$\begin{array}{ll}a=\text { Initial state } & T_{\text {(vi) }}=45^{\circ} \mathrm{C} \\ b=\text { Initial state } & T_{(v i}=150^{\circ} \mathrm{C}\end{array}$
$b=$ Initial state $\quad T_{(v j)}^{(v i)}=150^{\circ} \mathrm{C}$

Fig. 4: Load diagramm
Mean forward current $\mathrm{I}_{\mathrm{FAV})}$ of one module for a sine half wave for various cooling modes as a function of the cooling medium temperature $T_{\text {amb }}$ for a resistive load (horizontal mounting).

Cooling modes

$1=$ air self cooling	without	cooling plate
$2=$ air self cooling	with	cooling plate
$3=$ forced air cooling	without	cooling plate
$4=$ forced air cooling	with	cooling plate
$5=$ oil cooling	without	cooling plate
$6=$ oil cooling	with	cooling plate

1 = air self cooling
2 = air self cooling
4 forced aircooling
5 = oil cooling
6 = oil cooling
with cooling plat

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

