Standard Rectifier Module

1~ Rectifier Bridge

Part number

VBO30-08NO7

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For one phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

NㅔN2873

Package: PWS-A

- Industry standard outline
- RoHS compliant
- Easy to mount with two screws
- Base plate: Aluminium
internally DCB isolated
- Advanced power cycling

Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			900	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			800	V
I_{R}	reverse current	$\begin{aligned} & V_{R}=800 \mathrm{~V} \\ & V_{R}=800 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=150^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 40 \\ 1.5 \end{gathered}$	$\mu \mathrm{A}$ mA
V_{F}	forward voltage drop	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=30 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.10 \\ & 1.25 \end{aligned}$	V V
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=30 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{s}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1.01 \\ & 1.21 \end{aligned}$	V
$\mathrm{I}_{\text {dav }}$	bridge output current	$\begin{array}{ll} \mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C} & \\ \text { rectangular } & \mathrm{d}=0.5 \end{array}$	$\mathrm{T}_{\mathrm{v} s}=150^{\circ} \mathrm{C}$			25	A
$\begin{aligned} & \overline{V_{F 0}} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$			$\mathrm{T}_{\mathrm{v} \mathrm{s}}=150^{\circ} \mathrm{C}$			$\begin{aligned} & 0.80 \\ & 12.9 \end{aligned}$	V $m \Omega$
$\mathrm{R}_{\text {th, }}$	thermal resistance junction to case					4.2	K/W
$\mathrm{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.6		K/W
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			29	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current	$\begin{aligned} & t=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 400 \\ & 430 \end{aligned}$	A
		$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 340 \\ & 365 \end{aligned}$	A
$1^{2} \mathrm{t}$	value for fusing	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 800 \\ & 770 \\ & \hline \end{aligned}$	$A^{2} \mathrm{~S}$ $\mathrm{~A}^{2} \mathrm{~S}$
		$\begin{aligned} & \hline=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 580 \\ & 555 \end{aligned}$	$\mathrm{A}^{2} \mathrm{~S}$ $\mathrm{~A}^{2} \mathrm{~S}$
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		10		pF

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VBO30-08NO7	VBO30-08NO7	Box	20	470481

Equivalent Circuits for Simulation		* on die level	$\mathrm{T}_{\mathrm{vj}}=150^{\circ} \mathrm{C}$
$\mathrm{I} \rightarrow \mathrm{~V}_{0}-\sqrt{\mathrm{R}_{0}}$	Rectifier		
$\mathrm{V}_{0 \text { max }}$ threshold voltage	0.8		V
$\mathbf{R}_{0 \text { max }}$ slope resistance *	11.7		$\mathrm{m} \Omega$

Rectifier

Fig. 1 Forward current vs. voltage drop per diode

Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

Fig. 6 Transient thermal impedance junction to case vs. time per diode

Fig. 2 Surge overload current vs. time per diode

Fig. $3 I^{2}$ t vs. time per diode

Fig. 5 Max. forward current vs. case temperature per diode

Constants for $\mathrm{Z}_{\mathrm{thJc}}$ calculation:

i	$\mathrm{R}_{\mathrm{th}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.194	0.024
2	0.556	0.070
3	0.450	3.250
4	3.000	9.300

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bridge Rectifiers category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
G3SBA60-E351 GBJ1504-BP GBU10B-BP GBU15J-BP GBU15K-BP GBU4A-BP GBU4D-BP GBU6B-E3/45 GSIB680-E3/45 DB101BP DBA100G DBA150G DBA20G DBA250G DBA40G DBD10G-TM-E DBF10G DBF250G DBG150G DBG250G DF10SA-E345 RMB2S RCG APT30DF100HJ APT60DF20HJ B2S-E3/80 BU1506-E351 BU15085S-E345 BU1508-E3/45 BU1510-E3/45 RS404GL-BP RS405GL-BP G3SBA20-E3/51 G5SBA20-E3/51 G5SBA60-E3/51 GBJ1502-BP GBL02-E351 GBL10-E3/45 GBU10J-BP GBU4J-BP GBU4K-BP GBU8B-E3/45 GBU8D-BP GBU8J-BP GSIB1520-E3/45 MB1510 MB352W MB6M-G B2M-E345 B40C7000A B500C7000A

