

Thyristor Modules

ECO-PAC 2

V _{RSM}	V _{RRM}			
$\mathbf{V}_{\mathrm{DSM}}$	$oldsymbol{V}_{ extsf{DRM}}$	Тур		
1300 1700	1200 1600	VCO 132-12io7 VCO 132-16io7		

Symbol	Conditions	Maximum Ra	tings
I _{TRMS}	$T_{C} = 85^{\circ}C; T_{VJ} = 130^{\circ}C; 180^{\circ} \text{ sine}$	200 130	A A
I _{TSM}	$T_{VJ} = 45^{\circ}\text{C};$ $t = 10 \text{ ms}$ (50 Hz) $V_{R} = 0$ $t = 8.3 \text{ ms}$ (60 Hz)	3600 3850	A A
	$T_{VJ} = 125^{\circ}\text{C}; t = 10 \text{ ms} (50 \text{ Hz})$ $V_R = 0 t = 8.3 \text{ ms} (60 \text{ Hz})$	3200 3420	A A
l²t	$T_{VJ} = 45^{\circ}C;$ $t = 10 \text{ ms}$ (50 Hz) $V_{R} = 0$ $t = 8.3 \text{ ms}$ (60 Hz)	64 800 62 300	A ² s A ² s
	$T_{VJ} = 125^{\circ}\text{C}; t = 10 \text{ ms} (50 \text{ Hz})$ $V_{R} = 0 t = 8.3 \text{ ms} (60 \text{ Hz})$	51 200 49 100	A ² s A ² s
(di/dt) _{cr}	$T_{VJ} = 125^{\circ}C;$ repetitive, $I_{T} = 250 \text{ A}$ $f = 50 \text{ Hz}$; $t_{p} = 200 \mu\text{s}$;	150	A/µs
	$V_D = {}^2/_3 V_{DRM};$ $I_G = 0.5 A;$ non repetitive, $I_T = I_{TAVM}$ $di_G/dt = 0.5 A/\mu s$	500	A/µs
(dv/dt) _{cr}	$T_{VJ} = 125^{\circ}\text{C}; V_D = {}^2/_3 V_{DRM};$ $R_{GK} = \infty; \text{ method 1 (linear voltage rise)}$	1000	V/µs
P _{GM}	$T_{VJ} = 125^{\circ}\text{C};$ $t_p = 30 \text{ ms}$ $t_p = 100 \text{ ms}$ $t_p = 100 \text{ ms}$	≤ 10 ≤ 5 0.5	W W
P _{GAVM}		10	
T _{VJ} T _{VJM} T _{stg}		-40+130 150 -40+125	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
V _{ISOL}	50/60 Hz, RMS $t = 1 \text{ min}$ $I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	3000 3600	V~ V~
M _d	Mounting torque (M4)	1.5 - 2.0 14 - 18	Nm lb.in.
Weight	Typical including screws	24	g

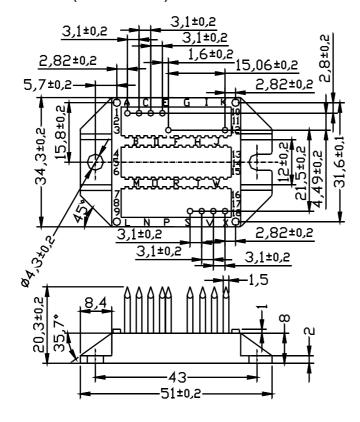
Features

- Isolation voltage 3600 V~
- Planar glass passivated chips
- Low forward voltage drop
- · Leads suitable for PC board soldering

Applications

- DC Motor control
- Light and temperature control
- Softstart AC motor controller
- Solid state switches

Advantages


- Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling
- High power density
- Small and light weight

Data according to IEC 60747 and refer to a single diode unless otherwise stated.

Symbol	Conditions	Characteristic Values			
			typ.	max.	
I _D , I _R	$V_R/V_D = V_{RRM}/V_{DRM}$	$T_{VJ} = 125^{\circ}C$		10	mA
V_{T}	$I_{T} = 200 \text{ A}$	$T_{VJ} = 25^{\circ}C$		1.3	V
\mathbf{V}_{TO} \mathbf{r}_{t}	For power-loss calculations only			0.80 1.65	V mΩ
V _{GT}	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = -40^{\circ}C$		1.5 1.6	V
I _{GT}	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = -40^{\circ}C$		300 400	mA mA
V_{GD}	$V_D = {}^2/_3 V_{DRM};$	T _{VJ} = 125°C		0.2 10	V mA
I _L	$t_p = 10 \ \mu s;$ $I_G = 0.5 \ A; \ di_G / dt = 0.5 \ A / \mu s$	$T_{VJ} = 25^{\circ}C$		450	mA
I _H	$V_D = 6 \text{ V}; R_{GK} = \infty;$	$T_{VJ} = 25^{\circ}C$		200	mA
t _{gd}	$V_D = \frac{1}{2}V_{DRM}$ $I_G = 0.5 \text{ A}; di_G/dt = 0.5 \text{ A}/\mu\text{s}$	$T_{VJ} = 25^{\circ}C$		2	μs
R_{thJC} R_{thJH}	per thyristor; DC current		0.35	0.25	K/W K/W
d _s d _A a	Creeping distance on surface Creepage distance in air Maximum allowable acceleration			11.2 5.0 50	mm mm m/s²

Dimensions in mm (1 mm = 0.0394")

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

M252511FV DD2	260N12K-A	DD380N16A	DD89N1600K-	$\underline{\mathbf{A}}$ $\underline{\mathbf{APT2X21D0}}$	C60J <u>APT58M</u>	80J B522F-2-Y	YEC MSTC90-1	6 25.163.0653.1
<u>25.163.2453.0</u> <u>25.</u>	163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
<u>25.330.4753.1</u> <u>25.</u>	330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	T485F T485H
T512F-YEB T513	<u>F T514F T</u>	<u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
<u>25.332.4353.1</u> <u>25.</u>	350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0								