

Thyristor Modules

ECO-PAC 2

V _{RSM}	V _{RRM}	
$f V_{DSM} \ f V$	V _{DRM}	Тур
1300 1700	1200 1600	VCO 180 - 12io7 VCO 180 - 16io7

Symbol	Conditions	Maximum Ra	tings
I _{TRMS}		280	A
I _{TAVM}	$T_{c} = 90^{\circ}\text{C}; T_{vJ} = 130^{\circ}\text{C}; 180^{\circ} \text{ sine}$	180	A
I _{TSM}	$T_{VJ} = 45^{\circ}C;$ $t = 10 \text{ ms}$ (50 Hz)	4500	Α
	$V_{R} = 0$ $t = 8.3 \text{ ms}$ (60 Hz)	4900	A
	$T_{VJ} = 125^{\circ}C; t = 10 \text{ ms}$ (50 Hz)	3800	Α
	$V_{R} = 0$ $t = 8.3 \text{ ms}$ (60 Hz)	4200	A
l²t	$T_{VJ} = 45^{\circ}C;$ t = 10 ms (50 Hz)	101 000	A^2s
	$V_{R} = 0$ $t = 8.3 \text{ ms}$ (60 Hz)	99 500	A ² s
	$T_{VJ} = 125$ °C; $t = 10 \text{ ms}$ (50 Hz)	72 000	A^2s
	$V_{R} = 0$ $t = 8.3 \text{ ms}$ (60 Hz)	73 000	A ² s
(di/dt) _{cr}	T_{VJ} = 125°C; repetitive, I_T = 250 A f = 50 Hz; t_p = 200 μ s;	150	A/µs
	$V_D = {}^2\!/_3V_{DRM};$ $I_G = 0.5A;$ non repetitive, $I_T = I_{TAVM}$ $di_G/dt = 0.5A/\mu s$	500	A/µs
(dv/dt) _{cr}	$T_{VJ} = 125$ °C; $V_D = \frac{2}{3} V_{DRM}$; $R_{GK} = \infty$; method 1 (linear voltage rise)	1000	V/µs
P _{GM}	$T_{VJ} = 125^{\circ}C;$ $t_{p} = 30 \text{ ms}$	≤ 10	W
	$I_T = I_{T(AV)M};$ $t_p = 300 \text{ ms}$	≤ 5	W
P _{GAVM}		0.5	W
V_{RGM}		10	V
T _{VJ}		-40+130	°C
T_{VJM}		150	°C
T _{stg}		-40+125	°C
V _{ISOL}	50/60 Hz, RMS t = 1 min	3000	V~
	$I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	3600	V~
M _d	Mounting torque (M4)	1.5 - 2.0	Nm
•		14 - 18	lb.in.
Weight	Typical including screws	24	g

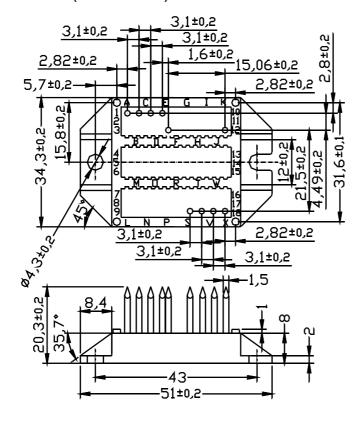
Features

- Isolation voltage 3600 V~
- Planar glass passivated chips
- Low forward voltage drop
- · Leads suitable for PC board soldering

Applications

- DC Motor control
- Light and temperature control
- Softstart AC motor controller
- Solid state switches

Advantages


- Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling
- High power density
- · Small and light weight

Data according to IEC 60747 and refer to a single diode unless otherwise stated.

Symbol	Conditions	Characteristic Values				
			typ.	max.		
I _D , I _R	$V_R/V_D = V_{RRM}/V_{DRM}$	$T_{VJ} = 125^{\circ}C$		10	mA	
V _T	$I_T = 200 \text{ A}$	$T_{VJ} = 25^{\circ}C$		1.1	V	
\mathbf{V}_{T0} \mathbf{r}_{t}	For power-loss calculations only			0.75 1.23	V mΩ	
V _{GT}	V _D = 6 V	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = -40^{\circ}C$		1.5 1.6	V	
I _{GT}	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = -40^{\circ}C$		300 400	mA mA	
V_{GD}	$V_D = {}^2/_3 V_{DRM};$	$T_{VJ} = 125^{\circ}C$		0.2 10	V mA	
I _L	$t_p = 10 \ \mu s;$ $I_G = 0.5 \ A; \ di_G / dt = 0.5 \ A / \mu s$	$T_{VJ} = 25^{\circ}C$		450	mA	
I _H	$V_D = 6 \text{ V}; R_{GK} = \infty;$	$T_{VJ} = 25^{\circ}C$		200	mA	
t _{gd}	$V_D = \frac{1}{2}V_{DRM}$ $I_G = 0.5 \text{ A}; di_G/dt = 0.5 \text{ A}/\mu\text{s}$	$T_{VJ} = 25^{\circ}C$		2	μs	
R_{thJC} R_{thJH}	per thyristor; DC current		0.23	0.17	K/W K/W	
d _s d _A a	Creeping distance on surface Creepage distance in air Maximum allowable acceleration			11.2 5.0 50	mm mm m/s²	

Dimensions in mm (1 mm = 0.0394")

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

M252511FV DD2	260N12K-A	DD380N16A	DD89N1600K-	$\underline{\mathbf{A}}$ $\underline{\mathbf{APT2X21D0}}$	C60J <u>APT58M</u>	80J B522F-2-Y	YEC MSTC90-1	6 25.163.0653.1
<u>25.163.2453.0</u> <u>25.</u>	163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
<u>25.330.4753.1</u> <u>25.</u>	330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	T485F T485H
T512F-YEB T513	<u>F T514F T</u>	<u>T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
<u>25.332.4353.1</u> <u>25.</u>	350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0								