Single Phase Rectifier Bridge

Preliminary data

$V_{\text {RSM }}$	$\mathbf{V}_{\text {RRM }}$	Type
$\mathrm{V}_{\text {DSM }}$	$\mathrm{V}_{\text {DRM }}$	
V	V	
$\mathbf{1 7 0 0}$	$\mathbf{1 6 0 0}$	VGO 36-16io7

$I_{d A V}=36 \mathrm{~A}$
 $\mathrm{V}_{\text {RRM }}=1600 \mathrm{~V}$

Features

- Package with DCB ceramic base plate
- Isolation voltage 3000 V~
- Planar passivated chips
- Low forward voltage drop
- Leads suitable for PC board soldering

Applications

- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Advantages

- Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling capability
- Small and light weight
* for resistive load at bridge output. IXYS reserves the right to change limits, test conditions and dimensions.

Symbol	Test Conditions	Charac	ristic	alues
$I_{\text {R }}$, I_{D}	$\begin{array}{ll}V_{R}=V_{\text {RRM }} ; \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }} & \begin{array}{l}\mathrm{T}_{V /}=\mathrm{T}_{\text {VJM }} \\ \mathrm{T}_{\mathrm{VJ}}=25{ }^{\circ} \mathrm{C}\end{array}\end{array}$	\leq	$\begin{array}{r} 5 \\ 0.3 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathbf{V}_{T}, \mathrm{~V}_{\mathrm{F}}$	$\mathrm{I}_{\mathrm{T}}, \mathrm{I}_{\mathrm{F}}=45 \mathrm{~A} ; \mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$	\leq	1.45	V
$\begin{aligned} & \mathbf{v}_{\text {To }} \\ & \mathbf{r}_{\mathrm{T}} \end{aligned}$	For power-loss calculations only ($\left.\mathrm{T}_{\mathrm{V},}=125^{\circ} \mathrm{C}\right)$		$\begin{array}{r} 0.85 \\ 13 \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~m} \Omega \end{gathered}$
$\mathrm{V}_{\text {GT }}$	$\begin{array}{ll}\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} ; & \mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{vJ}}=-40^{\circ} \mathrm{C}\end{array}$	\leq	1.0 1.2	V
$I_{\text {GT }}$	$\begin{array}{ll}\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} ; & \mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{vJ}}=-40^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C}\end{array}$	\leq \leq \leq	65 80 50	$m A$ $m A$ $m A$
$\begin{aligned} & \mathbf{V}_{\mathrm{GD}} \\ & \mathrm{I}_{\mathrm{GD}} \end{aligned}$	$\begin{array}{ll} \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; & \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \\ \mathrm{~T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; & \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \end{array}$	\leq \leq	0.2 5	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$
I_{L}	$\begin{aligned} & \mathrm{I}_{\mathrm{G}}=0.3 \mathrm{~A} ; \mathrm{t}_{\mathrm{G}}=30 \mu \mathrm{~s} ; \\ & \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.3 \mathrm{~A} / \mu \mathrm{s} ; \end{aligned}$	\leq \leq \leq	$\begin{aligned} & \hline 150 \\ & 200 \\ & 100 \\ & \hline \end{aligned}$	mA mA mA
I_{H}	$\mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{GK}}=\infty$	\leq	100	mA
$\mathrm{tgd}_{\text {g }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{D}}=1 / 2 \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{I}_{\mathrm{G}}=0.3 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.3 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	\leq	2	$\mu \mathrm{S}$
$\mathrm{t}_{\text {q }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{T}}=15 \mathrm{~A}, \mathrm{t}_{\mathrm{P}}=300 \mu \mathrm{~s}, \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=-10 \mathrm{~A} / \mu \mathrm{s}, \mathrm{dv} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \end{aligned}$	typ.	150	$\mu \mathrm{s}$
$\mathrm{R}_{\text {thJc }}$	per thyristor (diode); DC current per module		1.4 0.35	K/W K/W
$\mathrm{R}_{\text {thJk }}$	per thyristor (diode); DC current per module		$\begin{aligned} & 2.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$
$\begin{aligned} & d_{s} \\ & d_{A} \\ & a \end{aligned}$	Creepage distance on surface Creepage distance in air Max. allowable acceleration		12.6 6.3 50	mm mm $\mathrm{m} / \mathrm{s}^{2}$

Dimensions in mm (1 mm = 0.0394")

Fig. 1 Gate trigger range

Fig. 2 Gate controlled delay time t_{gd}

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bridge Rectifiers category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
MB2510 MB252 MB356G MB358G GBJ1504-BP GBU15J-BP GBU15K-BP GBU4A-BP GBU6B-E3/45 GSIB680-E3/45 DB101-BP DF01 DF10SA-E345 BU1508-E3/45 KBPC50-10S RS405GL-BP G5SBA60-E3/51 GBU10J-BP GBU6M GBU8D-BP GBU8J-BP 2KBB10 36MB140A TB102M MB1510 MB258 MB6M-G MB86 TL401G MDA920A2 TU602 TU810 MP501W-BP MP502-BP BR101-BP BR84DTP204 BU2008-E3/51 KBPC10/15/2501WP KBPC25-02 VS-2KBB60 DF06SA-E345 DF1510S VS-40MT160PAPBF W02M GBL02-E3/45 GBU4G-BP GBJ2506-BP GBU6B-E3/51 GSIB15A80-E3/45 DB104-BP

