VHF 36

Half Controlled
 Single Phase Rectifier Bridge

with Freewheeling Diode

$\mathbf{V}_{\text {RSM }}$	$\mathbf{V}_{\text {RRM }}$	Type
$V_{\text {DSM }}$	$V_{\text {DRM }}$	
V	V	
900	800	VHF 36-08io5
1300	1200	VHF 36-12io5
1500	1400	VHF 36-14io5
1700	1600	VHF 36-16io5

$\mathrm{I}_{\mathrm{dAVM}}=40 \mathrm{~A}$
$\mathrm{V}_{\text {RRM }}=800-1600 \mathrm{~V}$

Symbol	Test Conditions		Maximum Ratings		
$\mathrm{I}_{\mathrm{dAV}}$	$\mathrm{T}_{\mathrm{K}}=85^{\circ} \mathrm{C}$, module		36	A	
$\mathrm{I}_{\mathrm{dAVm}}{ }^{(1)}$	module		40	A	
$\mathrm{I}_{\text {fRMS }}, \mathrm{I}_{\text {TRMS }}$	per leg		28	A	
$\mathrm{I}_{\text {FSM }}, \mathrm{I}_{\text {TSM }}$	$\mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C}$;	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine	320	A	
	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	350	A	
	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {VJM }}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine	280	A	
	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	310	A	
$\mathrm{I}^{2} \mathrm{t}$	$\mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine	500	$\mathrm{A}^{2} \mathrm{~S}$	
	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	520	$A^{2} \mathrm{~S}$	
	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {VJM }}$	$\mathrm{t}=10 \mathrm{~ms} \mathrm{(50} \mathrm{Hz)}$,	390	$\mathrm{A}^{2} \mathrm{~S}$	
	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	400	$A^{2} \mathrm{~s}$	
(di/dt) ${ }_{\text {cr }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{Vv}}=125^{\circ} \mathrm{C} \\ & \mathrm{f}=50 \mathrm{~Hz}, \mathrm{t}_{\mathrm{P}}=200 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{D}}=2 / 3 \mathrm{~V} \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{I}_{\mathrm{G}}=0.3 \mathrm{~A}, \\ & \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.3 \mathrm{~A} / \mu \mathrm{s} \\ & \hline \end{aligned}$	repetitive, $\mathrm{I}_{T}=50 \mathrm{~A}$	150	A/ $/ \mathrm{S}$	
		non repetitive, $I_{T}=1 / 2 \cdot I_{\text {dAV }}$	500	A/ $/ \mathrm{S}$	
(dv/dt) ${ }_{\text {cr }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VMM}} ; \mathrm{V}_{\mathrm{DR}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{R}_{\mathrm{GK}}=\infty ; \text { method } 1 \text { (linear voltage rise) } \end{aligned}$		1000	V/ $/ \mathrm{S}$	
$\mathrm{V}_{\text {RGM }}$			10	V	
P_{Gm}	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} \\ & \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{TAVM}} \end{aligned}$	$\mathrm{t}_{\mathrm{p}}=30 \mu \mathrm{~s}$	≤ 10	W	
		$t_{p}=500 \mu s$	≤ 5	W	
		$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	≤ 1	W	
$\mathbf{P}_{\text {GAVM }}$			0.5	W	
$\begin{aligned} & \overline{\mathbf{T}_{\mathrm{vJ}}} \\ & \mathbf{T}_{\mathrm{vM}} \\ & \mathbf{T}_{\text {sta }} \end{aligned}$			-40...+125	${ }^{\circ} \mathrm{C}$	
				125	${ }^{\circ} \mathrm{C}$
			-40...+125	${ }^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {ISoL }}$	$\begin{aligned} & 50 / 60 \mathrm{~Hz}, \mathrm{RMS} \\ & \mathrm{I}_{\text {ISol }} \leq 1 \mathrm{~mA} \end{aligned}$	$\mathrm{t}=1 \mathrm{~min}$	3000	$\mathrm{V} \sim$	
		$\mathrm{t}=1 \mathrm{~s}$	3600	V~	
M_{d}	Mounting torque	(M5)	2-2.5	Nm	
		(10-32 UNF)	18-22	$\mathrm{lb} . \mathrm{in}$.	
Weight			50	g	

Features

- Package with DCB ceramic base plate
- Isolation voltage 3600 V ~
- Planar passivated chips
- $1 / 4$ " fast-on terminals
- UL registered E 72873

Applications

- Supply for DC power equipment
- DC motor control

Advantages

- Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling

Dimensions in mm (1 mm = 0.0394")

Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated.
(1) for resistive load

IXYS reserves the right to change limits, test conditions and dimensions.

Symbol	Test Conditions	Charact	ristic	alues
$I_{R}, I_{\text {d }}$	$\begin{array}{ll}V_{R}=V_{\text {RRM }} ; \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }} & \begin{array}{l}\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} \\ \\ \mathrm{T}_{\mathrm{VJ}}=25{ }^{\circ} \mathrm{C}\end{array}\end{array}$	$\begin{aligned} & \leq \\ & \leq \end{aligned}$	5 0.3	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{F}}$	$\mathrm{I}_{\mathrm{T}}, \mathrm{I}_{\mathrm{F}}=45 \mathrm{~A} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	\leq	1.45	V
$\begin{aligned} & \mathbf{V}_{\mathrm{T} 0} \\ & \mathbf{r}_{\mathrm{T}} \end{aligned}$	For power-loss calculations only ($\left.\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}\right)$		$\begin{array}{r} 0.85 \\ 13 \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~m} \Omega \end{gathered}$
$\mathrm{V}_{\text {GT }}$	$\begin{array}{ll}\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} ; & \mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{VdJ}}=-40^{\circ} \mathrm{C}\end{array}$	\leq	1.0	V
I_{GT}	$\begin{array}{ll}\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} ; & \mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{vJ}}=-40^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C}\end{array}$	\leq \leq \leq	65 80 50	mA mA mA
$\begin{aligned} & \overline{\mathbf{V}_{\mathrm{GD}}} \\ & \mathbf{I}_{\mathrm{GD}} \end{aligned}$	$\begin{array}{ll} \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; & \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\text {DRM }} \\ \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; & \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \end{array}$	$\begin{aligned} & \leq \\ & \leq \end{aligned}$	0.2 5	V mA
I_{L}	$\begin{aligned} & \mathrm{I}_{\mathrm{G}}=0.3 \mathrm{~A} ; \mathrm{t}_{\mathrm{G}}=30 \mu \mathrm{~s} ; \\ & \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.3 \mathrm{~A} / \mu \mathrm{s} ; \end{aligned}$	\leq \leq \leq	$\begin{aligned} & 150 \\ & 200 \\ & 100 \end{aligned}$	mA mA mA
I_{H}	$\mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{GK}}=\infty$	\leq	100	mA
t_{gd}	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{D}}=1 / 2 \mathrm{~V}_{\text {DRM }} \\ & \mathrm{I}_{\mathrm{G}}=0.3 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.3 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	\leq	2	$\mu \mathrm{s}$
$\mathbf{t}_{\mathrm{q}} \mathbf{Q}_{\mathrm{r}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{T}}=15 \mathrm{~A}, \mathrm{t}_{\mathrm{P}}=300 \mu \mathrm{~s}, \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=-10 \mathrm{~A} / \mu \mathrm{s}, \mathrm{dv} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \end{aligned}$	typ.	$\begin{array}{r} 150 \\ 75 \end{array}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{C} \end{aligned}$
$\mathrm{R}_{\text {thJc }}$	per thyristor (diode); DC current		1.15	K/W
			0.29	K/W
$\mathbf{R}_{\text {thJk }}$	per thyristor (diode); DC current		1.55 0.39	K/W K/W
$\mathrm{d}_{\text {s }}$	Creeping distance on surface		12.6	mm
$\mathrm{d}_{\text {A }}$	Creepage distance in air		6.3	mm
a	Max. allowable acceleration		50	$\mathrm{m} / \mathrm{s}^{2}$

Fig. 1 Gate trigger range

Fig. 2 Gate controlled delay time t_{gd}

Fig. 3 Forward current versus voltage drop per diode

Fig. 6 Power dissipation versus direct output current and ambient temperature

Fig. 4 Surge overload current

Fig. $5 I^{2} t$ versus time per diode

Fig. 7 Max. forward current versus heatsink temperature

Constants for $\mathrm{Z}_{\mathrm{t} \mathrm{t}, \mathrm{H}}$ calculation:

i	$\mathrm{R}_{\mathrm{thi}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.005	0.008
2	0.2	0.05
3	0.875	0.06
4	0.47	0.25

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SCR Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
DT430N22KOF T1851N60TOH T420N12TOF T470N16TOF T901N36TOF TD162N16KOF-A TD330N16AOF T300N14TOF
T390N16TOF T460N24TOF TD570N16KOF TD180N16KOF VSKE236/16PBF T1081N60TOH TT61N08KOF TT162N08KOF
T2001N34TOF T901N35TOF T1080N02TOF T360N22TOF TZ810N22KOF T420N18TOF T420N14TOF TD305N16KOF T740N26TOF T360N24TOF T430N16TOF T300N16TOF TD520N22KOF TT305N16KOF TT270N16KOF TD600N16KOF T740N22TOF T640N12TOF T470N12TOF NTE5728 ETZ1100N16P70HPSA1 T430N18TOF TD700N22KOFHPSA1 T3441N52TOH T2851N48TOH TD820N16KOFHPSA1 MCD501-16IO2 MCD501-18IO2 SK 100 KQ 12 SK 45 UT 16 SKKT 106B12 E SKKT 27/16E VS-

ST180S12P0VPBF PSET132/16

